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1 Propositional Logic

1.1 Syntax of propositional logic

Rosen and Zybooks use term compound proposition for an expression written
using logic. I will use the more common term propositional formula instead.

The syntaxr of propositional logic only says what a propositional formula
looks like. It does not say what a propositional formula means. We use A,
B, C and ¢ (Greek phi) to name arbitrary propositional formulas.

Definition 1.1. A propositional formula is defined as follows.

1. Symbols T and F are propositional formulas.

2. A propositional variable is a propositional formula. We will use p, q,
r and s, possibly with subscripts, as propositional variables and X for
talking about an arbitrary variable.

3. If A and B are propositional formulas then so are

For example, each of the following is a propositional formula.
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Operator V is read “or”, A is read “and”, and — is read “not”.

Rules of precedence and associativity determine how you break a proposi-
tional formula into subformulas. Higher precedence operators are done first.
The following lists operators by precedence, from highest to lowest.

Precedence

parentheses | high

—

A

V low

For example, pV ¢ Ar is understood to have the same structure as pV (g A1)
since A has higher precedence than V.

Associativity determines how an expression is broken into subexpressions
when it involves two or more occurrences of the same operator. We assume
that operators V and A are done from left to right. That is, they are left-
associative. (Associativity is like the wind. A north wind blows from north
to south.) For example, p V ¢ V r has the same structure as (p V q) V r.
Associativity does not really matter for V and A because they are associative
operators. That is, (p V q) V r always has the same meaning as p V (¢ V 1)
and (p A ¢) Ar always has the same meaning as p A (¢ A r). But associativity
does matter for some operators, so it is wise to think about it.

1.2 Meaning of propositional logic

The meaning of a propositional formula can only be defined when the values
of all of its variables are given. Each variable can be true or false.

Definition 1.2. A truth-value assignment is a set of components of the
form X = V where X is a variable and V is either T or F. For example,



{p=T, ¢=F} is a truth-value assignment. (Note that T and F are possible
values of a propositional variable or a propositional formula. Do not confuse
them with T and F, which are propositional formulas.)

Definition 1.3. If a is a truth-value assignment and X is a variable then
a(X) is the value (T or F) that a gives for variable X. For example, if a is
{p=T, q=F} then a(p) = T and a(q) = F.

Definition 1.4. Suppose that ¢ is a propositional formula and « is a truth-
value assignment that defines every variable that occurs in ¢. Notation ¢ : a
indicates the value of ¢ (either T or F) when variables have values given by
a. Specifically:

1.

(T : a) = T. That is, symbol T is always true; it does not depend on
a.

(F : a) = F. That is, symbol F is always false; it does not depend on
a.

If X is a variable then (X : a) = a(X). That is, X has the value that
it is given by truth-value assignment a.

(AV B :a)is T if at least one of (A : a) and (B : a) is T, and is
F otherwise. For example, ((pV q) : {p = T,q = F}) is T because
(p:{p=T,q=F})is T, and we only need one of p and ¢ to be true.

((AAB) :a)is Tif both of (A : a) and (B : a) are T, and is F otherwise.
For example, ((pAq) : {p =T,q=F})is F because (p: {p =T,q¢=F})
and (¢ : {p =T,q =F}) are not both T.

(mA:a)isTif (A:aisF,andis Fif (A:a)is T.

((A) : a) = (A : a). Parentheses only influence the structure of a propo-
sitional formula. A parenthesized formula (A) has the same meaning

as A.

You determine the value of a propositional formula by building up larger
and larger subexpressions, being careful to follow the rules of precedence and
associativity. For example, suppose that a = {p=F, ¢=T, r=T}. Then



1.3 Additional definitions

Definition 1.5. A — B is defined to be an abbreviation for —=A V B.
Operator — is read “implies”.

Intuitively, A — B means “if A is true then B is true.” But that is not its
definition. Its definition is that either A is false or B is true (or both). Notice
that, if B is true, then A — B is true, by definition. Also, if A is false, then
A — B is true, by definition.

Operator — has lower precedence than V and is left-associative. Note that
— is not an associative operator. (A — B) — C does not have the same
meaning as A — (B — C).

Definition 1.6. A< B is defined to be the same as (A — B) A (B — A)).
Operator < is read “if and only if”.

Formula A<+ B says that A and B have the same value; either both are true
or both are false. In fact, A<+ B is equivalent to (AA B) V (mAA—B). That
is, either A and B are both true or A and B are both false.

Definition 1.6. A = B if A<+ B is true for all possible values of the variable
in A and B. Read A = B as “A is equivalent to B.”.

Operators <> and = have even lower precedence than —. Here is a complete
precedence table, from high to low precedence.



Precedence

parentheses | high

—_

T I<|>

low

1.4 Truth tables

Since the value of a propositional formula depends on the values of its vari-
ables, one way to understand what the formula means is to look at its value
for all possible values of the variables. That leads to the idea of a truth table
of a propositional formula. The following is a truth table for —p V q.

P q - p Vo g
F F T F T F
F T | TF T T
T F F T F F
T T F T T T

There is a row for each possible collection of values of the variables. Un-
der each variable, we write that variable’s value. Under each operator, we
write the value of the formula having that operator as its main or outermost
operator. The column in blue is the value of the entire formula, —p V ¢.

1.5 Validity

Definition 1.8. Propositional formula ¢ is valid if (¢ : a) is true for every
truth value assignment a. A valid formula is also called a tautology.
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For example, operator V is commutative. Another way to say that is to say
that formula

(pVa)<(qgVp)
is valid. Let’s check that using a truth table.

p ¢ | ® vV a9 < (@ VvV p
F F|FFTF T FTFTF
FT| FTT T TTTF
TF| TFTF T FTT
TT|TTTT TTT

The validity of
(pVq)=(qVp)

is evident from the blue column of all T's.

Table 1-1 shows a collection of true equivalences and valid propositional
formulas. You can check each one using a truth table.

Valid equivalences give you a way to replace one formula by another. For
example, if you see p V ¢ in any context, you can replace it by ¢ V p. In
fact, you can replace any variable by any propositional formula in any of
the above tautologies (or any other valid propositional formula) and they
are still valid, provided (1) you replace every occurrence of a variable by
the same propositional formula and (2) you use parentheses to avoid rules
of precedence from rearranging the formula. For example, the commutative
law for A says that

PANqg = qAD.
Replacing p by (w — v) and ¢ by —r yields

(w—=v)A—r = —rA(w—0)

which is also valid.



Table 1-1: Some propositional tautologies

Equivalence Name

-(-p) = p double negation

pVqg = (qVp) commutative law of V

pANqg = (gVp) commutative law of A
(pVgVr = pV(gVr) associative law of V

(AN AT = pA(gAT) associative law of A
(pA(gVvr) = (pVag A(pVr) distributive law of A over V
(pVigAr) = (pAq)V(pAT) distributive law of V over A
=(pVq) = pA—q DeMorgan’s law for V
=(pAq) = —pVq DeMorgan’s law for A

—(p—=q) = pA—q

DeMorgan’s law for —

Law of the contrapositive

(pVq)—r = (p—>r)A(g—r) | cases

(pAg)—=r = (p—=(g—=7))

pA-p=F contradiction 1

p = (-p—p) contradiction 2

p = (-p—F) contradiction 3

pV —p Law of the excluded middle

pP—p Law of the excluded middle, re-
stated using —

—(p A —p) Law of the excluded middle (De-
Mogan variant)

p—(q—p)

-p—(p—q)
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