## Computer Science 2405

April 15, 2020
Happy Wednesday, April 15.

## Higher degree recurrences

We have seen rules for solving linear homogeneous recurrences of degree 1 and 2. Those rules generalize to higher degrees, and the generalizations are in Theorems 3 and 4 in Rosen, Section 8.2.2. However, we will restrict ourselves to solving recurrences of degree no more than 2 .

## Nonhomogeneous recurrences

A nonhomogeneous linear recurrence with constant coefficients has the general form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are real numbers and $F(n)$ is some function of $n$. Examples are

$$
a_{n}=a_{n-1}+n
$$

and

$$
a_{n}=2 a_{n-1}-a_{n-2}+2^{n} .
$$

## Associated homogeneous recurrences

Every nonhomogeneous recurrence has an associated homogeneous recurrence that is obtained by replacing the $F(n)$ term by 0 . For example, the associated homogeneous recurrence of

$$
a_{n}=a_{n-1}+n
$$

is

$$
a_{n}=a_{n-1}
$$

and the associated homogeneous recurrence of

$$
a_{n}=2 a_{n-1}-a_{n-2}+2^{n}
$$

is

$$
a_{n}=2 a_{n-1}-a_{n-2} .
$$

## Particular solutions

A particular solution of a nonhomogeneous recurrence is a solution for particular initial values.

Example. Let's look at recurrence

$$
a_{n}=a_{n-1}+n
$$

with initial value $a_{0}=0$. Here are the first few values of sequence $\left\{a_{n}\right\}$ (a notation that means $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ ).

$$
\begin{aligned}
a_{0} & =0 \\
a_{1} & =a_{0}+1 \\
& =0+1 \\
& =1 \\
a_{2} & =a_{1}+2 \\
& =1+2 \\
& =3 \\
a_{3} & =a_{2}+3 \\
& =3+3 \\
& =6 \\
a_{4} & =a_{3}+4 \\
& =6+4 \\
& =10
\end{aligned}
$$

It is easy to see that $a_{n}$ is just the sum of the first $n$ positive integers. A closed-form solution of recurrence

$$
a_{n}=a_{n-1}+n
$$

with initial value $a_{0}=0$ is

$$
a_{n}=\frac{n(n+1)}{2}
$$

and we call that a particular solution to recurrence

$$
a_{n}=a_{n-1}+n .
$$

In fact, it is easy to see that $a_{n}=f(n)$ where $f(n)=n(n+1) / 2$ is a solution of recurrence $a_{n}=a_{n-1}+n$ by substituting it into the
recurrence. Replacing $a_{n}$ by $f(n)$ and replacing $a_{n-1}$ by $f(n-1)$ in the recurrence gives

$$
n(n+1) / 2=(n-1) n / 2+n
$$

which is easily seen to be true.
If we choose a different initial value, we get a different sequence. For example, if $a_{0}=1$, then the sequence is

$$
\begin{aligned}
a_{0} & =1 \\
a_{1} & =a_{0}+1 \\
& =1+1 \\
& =2 \\
a_{2} & =a_{1}+2 \\
& =2+2 \\
& =4 \\
a_{3} & =a_{2}+3 \\
& =4+3 \\
& =7 \\
a_{4} & =a_{3}+4 \\
& =7+4 \\
& =11
\end{aligned}
$$

The solutions for that sequence is

$$
a_{n}=\frac{n(n-1)+2}{2} .
$$

Example. Consider recurrence

$$
a_{n}=2 a_{n-1}-a_{n-2}+2^{n}
$$

with initial values $a_{0}=0$ and $a_{1}=0$. Here are the first few values in sequence $\left\{a_{n}\right\}$.

$$
\begin{aligned}
a_{0} & =0 \\
a_{1} & =0 \\
a_{2} & =2 a_{1}-a_{0}+2^{2} \\
& =0-0+4 \\
& =4 \\
a_{3} & =2 a_{2}-a_{1}+2^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =8-0+8 \\
& =16 \\
a_{4} & =2 a_{3}-a_{2}+2^{4} \\
& =32-4+16 \\
& =44
\end{aligned}
$$

A closed-form solution is $a_{n}=f(n)$ where $f(n)=4\left(2^{n}-n-1\right)$. You can check that $f(0)=0$ and $f(1)=0$, so $f(n)$ gets the initial values right. Plugging $a_{n}=f(n)$ into the recurrence gives

$$
f(n)=2 f(n-1)-f(n-2)+2^{n}
$$

or
$4\left(2^{n}-n-1\right)=2\left(4\left(2^{n-1}-(n-1)-1\right)\right)-4\left(2^{n-2}-(n-2)-1\right)+2^{n}$
which we need to show is true. Multiplying out the right hand side gives

$$
4\left(2^{n}-n-1\right)=4\left(2^{n}\right)-8(n-1)-8-2^{n}+4(n-2)+4+2^{n}
$$

which you should be able to check is true.
We say that $a_{n}=4\left(2^{n}-n-1\right)$ is a particular solution of recurrence

$$
a_{n}=2 a_{n-1}-a_{n-2}+2^{n} .
$$

## Difference between particular solutions

Let's start with a nonhomogenous recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

We can find two different sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, with different initial values, both satisfying that recurrence. That is,

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

and

$$
b_{n}=c_{1} b_{n-1}+c_{2} b_{n-2}+\cdots+c_{k} b_{n-k}+F(n)
$$

for $n \geq 2$. Subtracting the second equation from the first gives

$$
a_{n}-b_{n}=c_{1}\left(a_{n-1}-b_{n-1}\right)+c_{2}\left(a_{n-2}-b_{n-2}\right)+\cdots+c_{k}\left(a_{n-k}-b_{n-k}\right) .
$$

If we define $d_{n}=a_{n}-b_{n}$, then

$$
d_{n}=c_{1} d_{n-1}+c_{2} d_{n-2}+\cdots+c_{k} d_{n-k}
$$

So $d_{n}$ must be a solution to the associated homogeneous recurrence. That tells us that

$$
a_{n}=b_{n}+d_{n}
$$

and particular solution for $a_{n}$ can be found by taking a different particular solution for $b_{n}$ and adding a solution of the associated homogeneous recurrence.
Example. We have seen two particular solutions to recurrence

$$
a_{n}=a_{n-1}+n
$$

namely $a_{n}=n(n-1) / 2$ when $a_{0}=0$ and $a_{n}=n(n-1) / 2+1$ when $a_{0}=1$. They differ by a constant that is added to one of them but not the other. The associated homogeneous equation

$$
a_{n}=a_{n-1}
$$

has solution $a_{n}=a_{0}$. That is, $a_{n}$ is a constant.

## General rule relating particular solutions

The following is Theorem 5 in section 8.2.2 of Rosen.
Suppose that $f(n)$ is a particular solution of recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

That is, $a_{n}=f(n)$ for all $n \geq 0$ for certain initial values. Then every particular solution $g(n)$ of that recurrence has the form $g(n)=f(n)+h(n)$ where $h(n)$ is a solution of homogenous recurrence

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

## Exercises

Do exercises 1,10 and 12 in homework set 5 . Submit your answers by email by Monday, April 20. Please refer to it as assignment 5-3. Attach file(s) whose names begin with your last name followed by your first name.

