Computer Science 2405
April 17, 2020

Happy Friday, April 17.
We only have two subjects left. Today, we look at how to find a particular solution to an nonhomogeneous recurrence of a restricted form. After that we will only have section 8.3 on divide-and-conquer recurrences left.

Solving nonhomogeneous linear recurrences of a restricted form

The following is Theorem 6 in section 8.2.3 of Rosen.

Theorem 6. A formula for finding a solution to a nonhomogenous recurrence Suppose that $F(n)$ is a function of n that has the form of a polynomial in n times a function of the form s^{n} where s is a constant. Suppose

$$
F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\cdots+b_{1} n+b_{0}\right)\left(s^{n}\right)
$$

Let R be the following nonhomogenous reccurrence.

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a n-k+F(n) .
$$

The characteristic equation of R is

$$
r^{n}-c_{1} r^{n-1}-c_{2} r^{n-2}-\cdots-c_{k} r^{n-k}=0 .
$$

The homogeneous recurrence R_{h} associated with R is:

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a n-k .
$$

Suppose that $a_{n}=h(n)$ is a general solution of R_{h}.
Case 1. Suppose that $r=s$ is not a solution of the above characteristic equation. Then, for any given initial conditions, recurrence R has a solution of the form

$$
a_{n}=\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\cdots p_{1} n+p_{0}\right)\left(s^{n}\right)+h(n)
$$

where $p_{0}, p_{2}, \ldots, p_{t}$ are constants that depend on the initial conditions.

Case 2. Suppose that $r=s$ is a solution of the above characteristic equation with multiplicity m. (That is, $(r-s)^{m}$ is a factor of $r^{n}-$ $c_{1} r^{n-1}-c_{2} r^{n-2}-\cdots-c_{k} r^{n-k}$ but $(r-s)^{m+1}$ is not a factor of $r^{n}-$ $c_{1} r^{n-1}-c_{2} r^{n-2}-\cdots-c_{k} r^{n-k}$.)
Then, for any given initial conditions, recurrence R has a solution of the form

$$
a_{n}=n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\cdots p_{1} n+p_{0}\right)\left(s^{n}\right)+h(n)
$$

where $p_{0}, p_{2}, \ldots, p_{t}$ are constants that depend on the initial conditions.

Example. Find a closed form solution of nonhomogenous recurrence R :

$$
\begin{equation*}
a_{n}=3 a_{n-1}+n \tag{1}
\end{equation*}
$$

where $a_{0}=0$.
Answer.

1. The associated homogeneous recurrence R_{h} is

$$
a_{n}=3 a_{n-1} .
$$

The characteristic equation is

$$
r-3=0
$$

which has solution $r=3$ (with multiplicity 1). A general solution to R_{h} is

$$
a_{n}=c 3^{n}
$$

where c is a constant.
2. Using the notation of Theorem 6, function $F(n)=n$ is the same as $F(n)=(1 n+0)\left(1^{n}\right)$, so $s=1, t=1, p_{1}=1$ and $p_{0}=0$. Since s is not a solution of the characteristic equation, there must be a solution of nonhomogenous recurrence R of the form

$$
\begin{equation*}
a_{n}=\left(p_{1} n+p_{0}\right)\left(1^{n}\right)+c 3^{n} \tag{2}
\end{equation*}
$$

where p_{1}, p_{0} and c are constants that depend on the initial conditions.
3. Now it is a matter of determining the values of constants p_{1}, p_{0} and c. Making direct use of recurrence (1):

$$
\begin{aligned}
a_{0} & =0 \\
a_{1} & =3 a_{0}+1 \\
& =1 \\
a_{2} & =3 a_{1}+2 \\
& =3+2 \\
& =5 \\
a_{3} & =3 a_{2}+3 \\
& =15+3 \\
& =18
\end{aligned}
$$

Since there are three constants to determine, we need three equations. Using solution (2) for $n=0,1$ and 2 yields the following equations.

$$
\begin{aligned}
& 0=a_{0}=\left(p_{1}(0)+p_{0}\right)\left(1^{0}\right)+c 3^{0} \\
& 1=a_{1}=\left(p_{1}(1)+p_{0}\right)\left(1^{1}\right)+c 3^{1} \\
& 5=a_{2}=\left(p_{1}(2)+p_{0}\right)\left(1^{2}\right)+c 3^{2}
\end{aligned}
$$

After simplifying those three equations, we have:

$$
\begin{aligned}
& 0=p_{0}+c \\
& 1=p_{1}+p_{0}+3 c \\
& 5=2 p_{1}+p_{0}+9 c
\end{aligned}
$$

From the first of those equations, $p_{0}=-c$. Substituting that into the second and third equations gives

$$
\begin{aligned}
& 1=p_{1}+2 c \\
& 5=2 p_{1}+8 c
\end{aligned}
$$

The first of those two equations indicates that $p_{1}=1-2 c$. Substituting that into the last equation gives

$$
5=2(1-2 c)+8 c
$$

or

$$
c=3 / 4
$$

Substituting the value of c into the formulas for p_{0} and p_{1} gives $p_{1}=-1 / 2$ and $p_{0}=-3 / 4$.
4. Now it is just a matter of substituting the known values of c, p_{0} and p_{1} into (2).

$$
\begin{aligned}
a_{n} & =\left(p_{1} n+p_{0}\right)\left(1^{n}\right)+c 3^{n} \\
& =-n / 2-3+(3 / 4) 3^{n} \\
& =\frac{3^{n+1}-2 n-3}{4}
\end{aligned}
$$

5. Let's check that. Replacing n by 0,1 and 2 gives

$$
\begin{aligned}
a_{0} & =\frac{3^{0+1}-2(0)-3}{4} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
a_{1} & =\frac{3^{1+1}-2(1)-3}{4} \\
& =\frac{9-2-3}{4} \\
& =1 \\
a_{2} & =\frac{3^{2+1}-2(2)-3}{4} \\
& =\frac{27-4-3}{4} \\
& =5
\end{aligned}
$$

It should come as no surprise our formula works for $n=0,1$ and 2. The values of c, p_{0} and p_{1} were chosen expressly to make it work out for $n=0,1$ and 2 . The real test comes for values of n that are larger than 2. Notice that, according to our solution,

$$
\begin{aligned}
a_{3} & =\frac{3^{3+1}-2(3)-3}{4} \\
& =\frac{81-6-3}{4} \\
& =18
\end{aligned}
$$

so our solution at least works for $n=3$.

Exercises

Note: exercise 12 was assigned in the previous lecture in error. You were not ready for it. But you are ready now. Do exercises 11 and 12 in homework set 5 . Submit by Wednesday, April 22.

