
Computer Science 2405

April 20, 2020

Happy Monday, April 20.

This is the last lecture that I will send you. It contains examples of
finding general solutions to nonhomogeneous recurrences and basics of
solving divide-and-conquer recurrences.

Exam 4 is on Monday, April 27. Spend your remaining time for this
course working exercises and studying for the exam. I am behind in
grading, but I will try to catch up.

The final exam is scheduled for Friday, May 1 at 11:00-1:30. I will make
the exam available at 10:30 on May 1 and expect it to be submitted
by 2:00, unless you make separate arrangements with me. I will try to
make it not too long.

Examples of getting a general solution to a

nonhomogeneous recurrence

The general solution of a recurrence works for all initial conditions. It
has unknown constants that you need to adjust to the initial conditions.
You find those constants by solving a set of linear equations as was done
in the previous lecture.

Today, we will only find the general solutions. We will not try to find
constants for particular initial conditions.

Example. Find the general solution the following recurrence.

an = 3an−1 − 2an−2 + n2

Answer.

1. The associated homogeneous recurrence (lecture 2020-04-15: As-
sociated homogeneous recurrences) is

an = 3an−1 − 2an−2

and its characteristic equation (lecture 2020-04-08: Characteristic
equations) is

r2 − 3r + 2 = 0.

Since r2 − 3r + 2 = (r − 1)(r − 2), the solutions are r = 1 and
r = 2.

1



2. Since the characteristic equations has two different solutions, the
general solution of the associated homogeneous recurrence (2020-
04-08: Degree 2 homogeneous recurrences without repeated roots)
is

an = c1(1
n) + c2(2

n)

where constants c1 and c2 depend on the initial values.

3. n2 = n2(1n), so s = 1. (See 2020-04-17: Solving nonhomogeneous
linear recurrences of a restricted form.) Notice that s is a solu-
tion of the characteristic equation with multiplicity 1. (That is
because, in the factored form (r−1)(r−2), factor (r−1) appears
one time.) According to the rule for solving nonhomogeneous
recurrences, the general solution is

an = n1(p2n
2 + p1n+ p0)(1

n) + c1(1
n) + c2(2

n)

= p2n
3 + p1n

2 + p0n + c1 + c2(2
n)

where p0, p1 and p2 are additional constants that depend on the
initial values.

Since there are 5 unknown constants p0, p1, p2, c0 and c1, you would
need to use the values of a0, a1, a2, a3 and a4 to get 5 linear equations.
The solution of those linear equations gives the values of the constants.
But we won’t do that. We will stop at the general solution.

Example. Find the general solution the following recurrence.

an = 4an−1 − 4an−2 + 3n.

Answer.

1. The associated homogenous recurrence is

an = 4an−1 − 4an−2.

The characteristic equation is

r2 − 4r + 4 = 0.

Since r2− 4r+4 = (r− 2)2, there is just one solution, r = 2, and
it has multiplicity 2.

2



2. Since the characteristic equation has only one solution, the gen-
eral solution of the homogeneous recurrence (2020-04-08: Degree
2 homogeneous recurrences with repeated roots) is

an = c12
n + c2n2

n.

3. The F (n) part in the nonhomogenenous recurrence is F (n) = 3n.
Since 3 is not a solution of the characteristic equation, the general
solution of recurrence

an = 4an−1 − 4an−2 + 3n

is
an = p13

n + c12
n + c2n2

n

(2020-04-17: Solving nonhomogeneous linear recurrences of a re-
stricted form).

Divide-and-conquer recurrences

This material is from section 8.3 of Rosen.

Some algorithms work by cutting the input into two or more pieces,
using the same algorithm on each piece, then combining the solutions
of the pieces into a solution for the original input.

A simple example is Merge Sort , which sorts a sequence L of values
into nondescending order as follows.

1. If there are 0 or 1 numbers in L, then the answer is L. (A list of
0 or 1 number is already sorted, trivially).

2. So suppose that L has at least 2 numbers in it.

(a) Cut list L in half, giving lists L1 and L2. If the length of L
is odd, make L1 have length ⌊n/2⌋ and make L2 have length
⌈n/2⌉.

(b) Sort L1 and L2 using Merge Sort. Suppose that S1 and S2

are the two sorted lists.

(c) Merge S1 and S2 into a single sorted list.

Here is an illustration.

3



4

7

12

42

76

51

30

16

}
}

30

7

42

12

16

76

4

51

{
{

sort

sort

}
}

merge

4

7

12

16

30

42

51

76

{
Merging two sorted sequences is easy. We use head(L) to mean the first
value in list L.

merge(L1, L2):

output = empty list

while L1 and L2 are both nonempty

If head(L2) < head(L1)

remove head(L2) from L2 and put it at the end of output

else

remove head(L1) from L1 and put it at the end of output

end if

end while

If L1 is empty

add all of L2 to the end of output

else

add all of L1 to the end of output

end if

Suppose the sum of the lengths of L1 and L2 is N . The merge algorithm
looks at each value just once. So it takes cN time to merge L1 and L2,
for some constant c.

Let’s define T (N) to be the time that it takes to sort a list of length
N using Merge Sort. Looking at the Merge Sort algorithm, it is clear
that, for N > 1,

T (N) = T (⌊N/2⌋) + T (⌈N/2⌉) + cN.

That is a typical divide-and-conquer recurrence. Notice that, when N
is a power of 2, T (N) is defined in terms of T (N/2) rather than in
terms of T (N − 1).

We will now look at how to solve such recurrences.

4



Change of variable

Suppose that N = 2n is a power of 2. Then ⌊N/2⌋ = N/2 and ⌈N/2⌉ =
N/2. The recurrence for Merge Sort (for N > 1) simplifies to

T (N) = 2T (N/2) + cN. (1)

Now we do a change of variable. Instead of expressing equations in
terms of N , we can express them in terms of n. Since N = 2n, we can
replace N by 2n in Equation (1). That gives

T (2n) = 2T (2n−1) + c2n (2)

since 2n/2 = 2n−1. Now let’s define function A by

A(n) = T (2n)

for all values of n. Then it must also be the case that

A(n− 1) = T (2n−1).

Replacing T (2n) by A(n) and T (2n−1) by A(n−1) in Equation (2) gives

A(n) = 2A(n− 1) + c2n.

To put that in a more familiar form, lets define an = A(n). Then the
recurrence is

an = 2an−1 + c2n. (3)

We have defined T (N), A(n) and an all in terms of the amount of time
that Merge Sort takes to sort a list of N values. We would like to find a
closed-form solution to each of those, so that we get an idea of how much
time Merge Sort takes. But Equation (3) is a linear nonhomogeneous
recurrence that we know how to solve!

1. The associated homogeneous recurrence is

an = 2an−1

and its characteristic equation is

r − 2 = 0.

The characteristic equation has one solution, r = 2.

5



2. The general solution of the associated homogeneous recurrence is

an = d2n

for some constant d.

3. Using the formula for solving nonhomogeneous linear recurrences
(2020-04-17), the F (n) term in the nonhomogeneous recurrence
if c2n, so s = 2. Notice that s is a solution of the characteristic
equation (of multiplicity 1). So the general solution of Equation
(3) is

an = n1(p0)2
n + d2n

= d2n + p0n2
n

Now that we know what an is, let’s find T (N). Replacing an by A(n)
gives

A(n) = d2n + p0n2
n. (4)

But A(n) = T (2n). We have said that N = 2n. So n = log2(N).
Replacing A(n) by T (N) and n by log2(N) in Equation (4) gives

T (N) = dN + p0N log2(N). (5)

We haven’t worked out the values of constants d and p0. It turns out
that p0 6= 0. Function N log2(N) grows faster than N , so it is the
dominant term. Throwing out the smaller term dN from Equation (5)
gives

T (N) ≈ p0N log2(N).

That is, it takes some constant times N log2(N) to sort a list of N
values using Merge Sort.

Big-Theta

We need a way of saying that two functions f(n) and g(n) “grow at the
same rate.” The following is standard mathematical notation for that.
Θ is a capital Greek letter theta.

Suppose that f(n) and g(n) are two functions. We say that f(n) =
Θ(g(n)) if there exist two positive real constants u and v so that, for
all sufficiently large values of n, ug(n) ≤ f(n) ≤ vg(n). That is, f(n)
is between one constant times g(n) and another constant times g(n).

6



For example, n2 = Θ(4n2) because

0.25(4n2) ≤ n2 ≤ 1(4n2).

Notice that 4n2 = Θ(n2) because

1(n2) ≤ 4n2 ≤ 4(n2).

For any two functions f(n) and g(n),

f(n) = Θ(g(n)) ⇐⇒ g(n) = Θ(f(n)).

If f(n) and g(n) are polynomials, then f(n) = Θ(g(n)) if and only if
polynomials f(n) and g(n) have the same degree. So n3 +2n = Θ(n3).

A rule for solving divide-and-conquer recurrences

The idea of change of variable can be used to derive a useful general
rule for solving divide-and-conquer recurrences.

It turns out that floors and ceilings don’t matter. You can replace
T (⌊n/k⌋) and T (⌈n/k⌉) by T (n/k) in your recurrence, ignoring the
fact that n/k might not be an integer.

Master Theorem
Suppose that T (n) is an increasing function that satisfies recurrence
relation

T (n) = aT (n/b) + cnd

whenever n = bk for some positive integer k. Also suppose that b is a
positive integer and a, c and d are real numbers where

a ≥ 1

c > 0

d ≥ 0

Then

T (n) =











Θ(nd) ifa < bd

Θ(nd log2(n)) ifa = bd

Θ(nlogb(a)) ifa > bd

7



Example. Use the Master Theorem to find a solution to

T (n) = 2T (n/2) + n.

Answer. Compare this recurrence with the general form

T (n) = aT (n/b) + cnd

in the Master Theorem. Here, a = 2, b = 2, c = 1 and d = 1. Notice
that a = bd. So the solution is

T (n) = Θ(n log2(n)).

Example. Use the Master Theorem to solve

T (n) = 3T (n/2) + n.

Answer. Compare this recurrence with the general form

T (n) = aT (n/b) + cnd

in the Master Theorem. Here, a = 3, b = 2, c = 1 and d = 1. Notice
that a > bd. So the solution is

t(n) = Θ(nlog2(3)).

log2(3) is rougly 1.6. So T (n) is roughly proportional to n1.6.

Example. Use the Master Theorem to solve

T (n) = 2T (n/3) + n2.

Answer. Compare this recurrence with the general form

T (n) = aT (n/b) + cnd

in the Master Theorem. Here, a = 2, b = 3, c = 1 and d = 2. Notice
that a < bd. So the solution is

T (n) = Θ(n2).

8



Example. Use the Master Theorem to solve

T (n) = 4T (n/2) + n2.

Answer. Compare this recurrence with the general form

T (n) = aT (n/b) + cnd

in the Master Theorem. Here, a = 4, b = 2, c = 1 and d = 2. Notice
that a = bd. So the solution is

T (n) = Θ(n2log2(n)).

Example. Use the Master Theorem to solve

T (n) = 7T (n/2) + n2.

Answer. Compare this recurrence with the general form

T (n) = aT (n/b) + cnd

in the Master Theorem. Here, a = 7, b = 2, c = 1 and d = 2. Notice
that a > bd. So the solution is

T (n) = Θ(nlog2(7)).

log2(7) is roughly 2.8.

Exercises

Do exercises 14 from homework set 6 and the following exercises.

1. Find a Θ estimate of T (n), where T (n) satisfies the following
recurrence.

T (n) = 2T (n/4) + n.

2. Find a Θ estimate of T (n), where T (n) satisfies the following
recurrence.

T (n) = 4T (n/4) + n.

3. Find a Θ estimate of T (n), where T (n) satisfies the following
recurrence.

T (n) = 5T (n/4) + n.

9



4. Find a Θ estimate of T (n), where T (n) satisfies the following
recurrence.

T (n) = 16T (n/4) + n.

5. Find a Θ estimate of T (n), where T (n) satisfies the following
recurrence.

T (n) = 16T (n/4) + n2.

10


