
Computer Science 2530

Spring 2020

Practice Exam 5 Answers

Answers to multiple-choice questions are marked with an arrow.

1. [MC] If x = log2(60), then

(a) 30 < x < 60

(b) 4 < x < 5

(c) → 5 < x < 6

(d) 6 < x < 7

(e) 7 < x < 8

2. [MC] Only one of the following is true. Which one?

(a) n2 is O(n)

(b) → n2 + 5n is O(n2)

(c) n3 is O(n2 + 3n+ 10)

(d) n3 is O(n2 + 10n)

(e) n is O(log(n)).

3. [MC] To within a constant factor, how long does it take, in the worst
case, to insert a value into a height-balanced binary search tree that
has n values in it?

(a) Θ(1)

(b) → Θ(log2(n))

(c) Θ(n)

(d) Θ(n log2(n))

(e) Θ(n2)

4. [MC] To within a constant factor, how long does it take, on the average,
to look up a value in a hash table that has n values in it, assuming a
high quality implementation?

(a) → Θ(1)

(b) Θ(log2(n))

(c) Θ(n)

(d) Θ(n log2(n))

(e) Θ(n2)

5. [MC] Suppose that you start with an empty height-balanced binary
search tree. You successively insert n different values, into the binary
search tree. How much time does it take, in the worst case, to do all
of the insertions? (Give the cumulative time for all insertions, not just
the time for one of them.)

(a) Θ(1)

(b) Θ(log2(n))

(c) Θ(n)

(d) → Θ(n log2(n))

(e) Θ(n2)

Consider the following binary search tree, T0.

55

24

15

75

63 96

80 99

6. Show the tree that you get if you insert 76 into tree T0, using the

basic algorithm that does not perform any rotations.

55

24

15

75

63 96

9980

76

7. Show the tree that you get if you insert 76 into tree T0, using the

algorithm that performs rotations to keep the tree height-

balanced. Start with the original tree T0 that does not contain 76.

55

24

15 75

63

96

99

80

76

8. Show the tree that you get if you insert 97 into tree T0, using the

basic algorithm that does not perform any rotations. Start
with the original tree T0, which does not contain 76.

55

24

15

75

63 96

9980

97

9. Show the tree that you get if you insert 97 into tree T0, using the

algorithm that performs rotations to keep the tree height-

balanced. Start with the original tree T0 that does not contain 76 or
97

55

24

15 75

63

96

99

80 97

Question 10 refers to the following type definition, which defines a type of
nodes in binary trees.

struct Node

{

int item;

Node* left;

Node* right;

Node(int i, Node* L, Node* R)

{

item = i;

left = L;

right = R;

}

};

10. Assume that tree t contains only positive integers. Write a C++ def-
inition of function largest(t), which returns the largest value in tree
t. If t is an empty tree, then largest(t) should return 0. Tree t is not

necessarily ordered like a binary search tree. You can use the max

function. A heading is given.

int largest(const Node* t)

{

if(t == NULL)

{

return 0;

}

else

{

return max(t->item, max(largest(t->left), largest(t->right)));

}

}

11. Suppose that t is a tree that is not necessarily a binary search tree.
You would like to define function member(x, t), which returns true
if x occurs in at least one of the nodes int tree t, and returns false
otherwise.

Write a definition of member(x, t). A heading is given.

bool member(int x, const Node* t)

{

if(t == NULL)

{

return false;

}

else

{

return x == t->item || member(x, t->left) || member(x, t->right);

}

}

Alternatively,

bool member(int x, const Node* t)

{

if(t == NULL)

{

return false;

}

else if(x == t->item)

{

return true;

}

else if(member(x, t->left))

{

return true;

}

else

{

return member(x, t->right);

}

}

