
Computer Science 2530

March 27, 2020

Happy Friday, March 27.

Remember that there is an exam on Monday. Make sure that you
understand the answers to the practice exam (available on the course
web page), and be prepared to do similar problems on the exam.

Looping over a linked list using a while-

loop

Today we look at how to write a function of a list that uses a loop
instead of recursion.

We have seen how to plan a while-loop by doing a pre-simulation. The
same thing works with lists. Here are two examples.

Adding up the numbers in a list

You can use a scan algorithm to add up the numbers in a linked list.
It is similar to adding up the numbers in an array, but is actually more
direct. When working with an array, you use an array index or length
as a proxy for the values in the array. With a linked list, there is no
need for a proxy. The sequence is right there to look at.

Let’s have two variables, r and s, where s accumulates the sum and
r is the part of the list that has not yet been looked at. Here is a
pre-simulation.

r s

[2, 4, 6, 8, 10] 0
[4, 6, 8, 10] 2

[6, 8, 10] 6
[8, 10] 12

[10] 20
[] 30

Notice that, at each line, s is the sum of all of the numbers that have
been removed from the original list [2, 4, 6, 8, 10].

The last line of the pre-simulation tells you when to end the loop.
Clearly, when r is an empty list, you should stop. Updating variables
r and s is simple. Check that the following always works.

1

s = s + head(r);

r = tail(r);

Here is the completed function definition.

int sum(ListCell* L)

{

ListCell* r = L;

int s = 0;

while(!isEmpty(p))

{

s += head(p);

p = tail(p);

}

return s;

}

Getting the reversal of a list

Suppose reverse(L) is supposed to return the reversal of list L. For
example, reverse([2, 4, 6, 8, 10]) should return [10, 8, 6, 4, 2]. Here is a
pre-simulation, where variable hand is the part of list L that has not
yet been looked at and table is the reversal of the part that has been
removed from L.

hand table

[2, 4, 6, 8, 10] []
[4, 6, 8, 10] [2]

[6, 8, 10] [4, 2]
[8, 10] [6, 4, 2]

[10] [8, 6, 4, 2]
[] [10, 8, 6, 4, 2]

The last line tells you to stop the loop when hand is an empty list.
The following works to update variables hand and table. Check that
it works.

table = cons(head(hand), table);

hand = tail(hand);

2

Remember that cons(h, t) is equivalent to h : t. It is the list whose head
is h and whose tail is t. For example, cons(6, [4, 2]) = [6, 4, 2].

Here is a completed definition of reverse(L) using a while-loop.

ListCell* reverse(ListCell* L)

{

ListCell* hand = L;

ListCell* table = emptyList;

while(!isEmpty(hand))

{

table = cons(head(hand), table);

hand = tail(hand);

}

return table;

}

Looping over a linked list using a for-loop

You can also use a for-loop to loop over a linked list. Remember that
we treat a for-loop differently from a while-loop. Think of the for-loop
as doing something for each value in the list.

Here is a boilerplate loop that looks at each member x in list L.

for(ListCell* p = L; !isEmpty(p); p = tail(p))

{

int x = head(p);

...

}

All you need to do is decide what to do for each value x in list L.
Here is a definition of sum(L) using a for-loop. The idea is to add each
member of the list into s.

3

int sum(ListCell* L)

{

int s = 0;

for(ListCell* p = L; !isEmpty(p); p = tail(p))

{

int x = head(p);

s = s + x;

}

return s;

}

Here is a definition of reverse(L) using a for-loop. Each value x in list
L is added to the front of the result list.

ListCell* reverse(ListCell* L)

{

ListCell* result = emptyList;

for(ListCell* p = L; !isEmpty(p); p = tail(p))

{

int x = head(p);

result = cons(x, result);

}

return result;

}

Const lists

Neither sum(L) nor reverse(L) changes L. So it makes sense to say
that the parameter is a const parameter. You can do that, but any
variable that refers to a const list or a part of a const list must itself be
marked const. Here is a definition of sum(L with a const parameter.
Notice that p has type const ListCell*.

4

int sum(const ListCell* L)

{

int s = 0;

for(const ListCell* p = L; !isEmpty(p); p = tail(p))

{

int x = head(p);

s = s + x;

}

return s;

}

Here is a definition of reverse(L) with a const parameter. Notice that
result is not const, since it does not refer to any part of list L.

ListCell* reverse(const ListCell* L)

{

ListCell* result = emptyList;

for(const ListCell* p = L; !isEmpty(p); p = tail(p))

{

int x = head(p);

result = cons(x, result);

}

return result;

}

Using C++ notation

When writing in C++, you can feel free to use C++ notation directly.
The following table shows equivalent things, one written in conceptual
notation and the other in C++ notation.

Conceptual C++

emptyList NULL

isEmpty(L) L == NULL

head(L) L->head

tail(L) L->tail

h : t new ListCell(h, t) or cons(h, t)

5

Here is the definition of reverse(L) converted to C++ notation.

ListCell* reverse(const ListCell* L)

{

ListCell* result = NULL;

for(const ListCell* p = L; p != NULL; p = p->tail)

{

result = new ListCell(p->head, result);

}

return result;

}

You can use any mixture of conceptual and C++ notations that you
find convenient.

Exercises

Read lectures 33A to 33D. Do the two exercises at the bottom of page
33A.

6

