Computer Science 2530
April 9, 2020

Happy Thursday, April 9.

Today we look at important data structure, binary search trees. I will
use abbreviation BST for binary search tree.

Binary search trees

A BST can be used to store a set of values where you can

1. check whether a particular value is in the set;
2. add a value to the set;

3. remove a value from the set.

For simplicity, our BSTs will always store sets of integers. It is easy to
modify them to store sets of any type of values.

A BST is a binary tree with an ordering requirement. If a node v in a
BST contains item k, then every node in the left subtree of v contains
an item that is < k£ and every node in the right subtree of v contains
an item that is > k. No item can occur more than once in a binary
search tree.

Page 40A in the notes describes BSTs and shows examples.

Lookup in a binary search tree

A BST represents the set of all of its items. For example, BST

(30)
Sod
) @9 G ()

Tree tg



represents set {5, 18, 24,30, 36,50, 51}. Lets call the above BST t,.

The ordering requirement makes it easy to test whether a value is in a
BST. For example, imagine checking whether 24 is in ¢3. Comparing
24 to 30 shows that 24 must be in the left subtree, if it is in ¢y at all.
So you move to the left subtree. At each node v, you simply compare
the value x that you are searching for with the item £ that is in node
v.

1. If £ = x, you can stop; obviously, = occurs in the tree rooted at
v. For example, if you want to know whether 30 occurs in ¢y, you
stop immediately because 30 occurs in the root of .

2. If x < k, then x can only occur in the left subtree of v, if it occurs
at all. So you search the left subtree.

3. If z > k, then x can only occur in the right subtree of v, if it
occurs at all. So you search the right subtree.

There is one more important case. Recall that a NULL pointer is an
empty tree. It represents an empty set. When asked whether x occurs
in an empty tree, you always answer no. That will cause a search for
42 in ty to return false.

Page 40B in the notes describes function member(zx, t), which returns
true if (and only if) x occurs in BST t. Read about that.

Insertion into a binary search tree

Insertion into a BST is really simple. Here are the rules for inserting x
into a BST ¢.

1. If you are asked to insert x into an empty tree, replace the empty
tree by a node that contains x.

2. If you are asked to insert x into a tree whose root contains x, do
nothing, since x is already there, and a BST is not allowed to
contain any value more than once.

3. If you are asked to insert x into a tree ¢ whose root contains item
k where x < k, insert x into the left subtree of t.

4. If you are asked to insert x into a tree ¢t whose root contains item
k where x > k, insert x into the right subtree of t.



Important fact

After inserting x into a tree that did not already contain
r, you will always find x in a leaf.

Page 40B of the notes gives a definition of insert(z, t), which inserts z
into BST ¢. (Insert is a destructive function; it changes t.) Here is the
definition of insert.

//
// insert
//
// insert(x,T) inserts x (destructively) into
// binary search tree T. If x is already a
// member of T, insert does nothing.

//

void insert(int x, Nodex& T)
{
if (T == NULL)
{
T = new Node(x, NULL, NULL);
}
else if(x < T->item)
{
insert(x, T->left);
}
else if(x > T->item)
{
insert(x, T->right);
}
}

Here are some observations about the definition of insert.
1. Notice that T is a pointer that is passed by reference. Any change
to variable 1" will change the variable that is passed to insert. For
example, after

Nodex t1 = NULL;

variable t1 holds a null pointer. Then, after doing



insert (10, t1);

t1 looks looks like this.
t1

Clearly, insert has changed the pointer stored in ¢1.

2. There is no else case at the end of the cases. If x = t->item, then
insert(z, t) does nothing,.

Exercises

Do the exercises at the bottom of page 40B. You should find them very
easy.

Removing the smallest value

The smallest value in a BST is always found by starting at the root and
moving as far as possible to the left. That is, you follow left pointers
until you encounter a NULL pointer.

Page 40C describes function removeSmallest(t), which

1. removes the smallest value from nonempty BST ¢, and

2. returns the value that was removed.

Removing the smallest value is an important tool to help remove a
given value. Read 40C to see how removeSmallest works.



