
Computer Science 2530

Remarks on Assignment 5

Approach assignment 5 by trying to find the simplicity in it. Work by
successive refinement. Build a little, then test that before moving on.

Storing a graph

You will need a structure type for an edge. It holds two vertex numbers
and a weight. All three numbers are integers.

Add a parameterless constructor for type Edge that sets all parts to
hold 0, and possibly another constructor that takes two vertex numbers
and a weight and installs them.

You will also need a structure type for a graph. It should hold:

1. the number of vertices;

2. the number of edges;

3. a pointer to an array of edge structures;

4. the physical size of the array of edges.

The assignment shows a graph described by the following input.

5

1 2 9

1 3 12

2 4 18

2 3 8

2 5 20

3 5 15

0

Here is a diagram of the representation of that graph.

u v w

1 2

4

3

2

9

1 12

18

2 3 6

5

20

3

5

15
2

g

5

6

edges

numV

numE

... ... ...

maxE 100

1



Notice that the first edge is g->edges[0], and the ’u’ component of the
first edge is g->edges[0].u.

Add a constructor for typeGraph that takes the number of vertices and
the maximum number edges to allow, and that is all. The constructor
should allocate the array of edges, and it should set the current number
of edges to 0.

Be careful not to confuse the physical size of the edge array with its
logical size, which is the number of edges that it currently holds.

Reading and writing a graph

The input starts with the number of vertices. The number of edges is
not explicitly in the input. Do not change the input format to

suit yourself. If you change the input format, then you are

not solving the assignment that you have been assigned.

Write insertEdge so to add an edge to the graph. Notice that the
next edge goes at index g->numE. InsertEdge must to the whole job
of inserting an edge, and that includes adding 1 to the current number
of edges.

Write readGraph so that it:

1. reads the number of vertices;

2. reads each edge until it reads 0, inserting the edges using insert-

Edge.

Notice that the parameter, e, of readGraph is the maximum number
of edges to be allowed. It is not the actual number of edges in the
graph.

When main calls readGraph, it should choose a maximum number of
edges that is at least 100. But also make it so that you can change the
maximum number of edges allowed without modifying the definition
of main. Instead, define a named constant near the beginning of the
program, where it is easy to find.

Write writeGraph. Write bf main so that it just reads a graph and
then writes the graph.

2



Sorting the edges

Write sortEdges to sort the array of edges in a graph g. Start with:

#include <cstdlib>

typedef int (*QSORT_COMPARE_TYPE)(const void*, const void*);

...

// compareEdges(A,B) returns a result that is

// > 0 if edge A has a larger weight than B

// < 0 if edge A has a smaller weight than B

// = 0 if edges A and B have the same weight.

int compareEdges(const Edge* A, const Edge* B)

{

return A->weight - B->weight;

}

Read about qsort in item 7 of the refinement plan. In the call

qsort(E, N, sizeof(Edge), (QSORT_COMPARE_TYPE) compareEdges);

E must be the array of edges and N must be the current number of
edges.

Write minimalSpanningTree so that it only sorts the array of edges
and returns g. Modify main so that it calls minimalSpanningTree

and writes the resulting graph (using writeGraph!). You should see
the original graph, but with the edges sorted by weight.

Computing a minimal spanning tree

Now you are ready to flesh out minimalSpanningTree. Using the
Graph constructor, build a new graph that will become the minimal
spanning tree of g. A tree with n vertices always has n − 1 edges, so
you know exactly how large the array of edges needs to be. Don’t make
it too large or too small. Initially, your minimal spanning tree graph
has no edges.

You will need an equivalance relation manager, where a pair u and v

of vertices are in the same group if there is a path from u to v. Since
there are initially no edges, each vertex is in a group by itself.

3



Loop through the edges of g, in order from smallest weight to largest
weight. When you encounter an edge between u and v in g, add it
to the minimal spanning tree (using insertEdge!) provided u and v

are not already connected to one another. Use the equivalence relation
manager.

Pay attention to the difference between vertices and edges.

There g->numE edges.

Finishing up

In the past, some students have inexplicably writtenminimalSpanningTree(g)
so that it destroys g. They did it because they did not want to create
a local variable inside minimalSpanningTree. Don’t do that!

Temporarily modify main so that it writes the original graph a sec-
ond time, after computing the minimal spanning tree. Is the original
graph the same as it was (except that the edges have been sortted into
increasing order by weight)? Once you are satisfied that you have not
destroyed the original graph, remove the extra echo of the graph.

4


