
prev

16 Beyond NP

The theory of NP-completess is a bedrock of computer science because there
are so many NP-complete problems, and they crop of everywhere. There
are NP-complete problems from mathematics, the theory of databases, the
theory of compilers and even from politics.

But even though NP-completeness is central, there is more to the world than
that. This section looks at two other classes of problems.

16.1 Co-NP and the validity problem

We started looking at difficult problems in Section 12.3 with the Validity
Problem for Propositional Logic (VALIDPL). But we have not said anything
more about it yet. We have not shown that it is NP-complete, nor have we
shown that it is in P.

There is a good reason for that. If Conjecture 15.1 is true and P 6= NP, then
the validity problem is neither in P nor NP-complete. That is a consequence
of the asymmetry of NP: if A ∈ NP, then there are short, easily checkable
proofs that things are in A, but there is no requirement that there are short,
easily checkable proofs that things are not in A.

But VALIDPL has short, easily checkable proofs of nonmembership. To
show that φ is not valid, show that ¬φ is satisfiable by finding a truth-value
assignment that makes ¬φ true. The following is obvious.

Theorem 16.1. Suppose φ is a propositional formula. φ is valid if and only
if ¬φ is not satisfiable.

Define SATPL to be the set of propositional formulas that are not satisfi-
able. Then f(φ) = ¬φ is a polynomial-time reduction from VALIDPL to
SATPL. The same function is a polynomial-time reduction from SATPL
to VALIDPL. So VALIDPL is equivalent in difficulty to SATPL.

What can we say about languages that are complements of NP-complete
languages?

1

Definition 16.1. Co-NP = {X | X ∈ NP} is the class of all languages
whose complements are in NP.

Pay close attention to the definition of Co-NP. Co-NP is not the complement
of NP.

Definition 16.2. Language A is Co-NP-complete if A ∈ Co-NP and X ≤p A
for every language X ∈ Co-NP.

Theorem 16.2. A is NP-complete if and only if A is Co-NP-complete.

Proof. By the definition of Co-NP, A ∈ NP → A ∈ Co-NP and A ∈ NP →
A ∈ Co-NP. But A = A.

Suppose that A is NP-complete. Then X ≤p A for every X in NP. Suppose
that f is a polynomial-time reduction from X to A. By the definition of a
polynomial-time reduction,

x ∈ X↔ f(x) ∈ A.

So
x 6∈ X↔ f(x) 6∈ A.

or, equivalently,
x ∈ X↔ f(x) ∈ A.

So f is a polynomial-time reduction from X to A. So A is Co-NP-complete.

The other direction, showing that if X ∈ Co-NP then then X is NP-complete,
is true by symmetry.

♦ ♦

Since VALIDPL is equivalent to SATPL, VALIDPL is Co-NP-complete.

16.2 NP ∩ Co-NP and factoring

We know that P ⊆ NP. By symmetry, P ⊂ Co-NP. So P ⊂ NP ∩ Co-NP.
An obvious question is: Is P = NP∩Co-NP. That is conjectured to be false.

Conjecture 16.1 P 6= (NP ∩ Co-NP).

2

Proving Conjecture 16.1 is difficult because, if P = NP then P = Co-NP and
the conjecture is false.

But what would lead people to make Conjecture 16.1? There must be
some decision problem that is conjectured to be in NP ∩ Co-NP but not
in P . And there is: factoring integers. Quick, what are the prime factors of
109,938,432,277?

The problem of factoring a given integer cannot be in NP ∩ Co-NP because
it is not a decision problem; the result is a list of factors. But there is a
decision problem that is equivalent to that in computational difficulty.

Definition 16.3. FACTOR is the following decision problem.

Input. Two positive integers x and k.
Question. Does there exist a factor y of x where 1 < y < k?

If you have a polynomial-time algorithm that finds the factors of an inte-
ger then it is easy to decide FACTOR. And if you have a polynomial-time
algorithm for FACTOR then you can find the smallest factor of an integer
using binary search. Having found the smallest factor, you divide x by that
factor and continue finding factors, stopping when the number that you have
is prime. (As mentioned in Section 12, there is a known algorithm that
determines whether a given integer is prime.)

Conjecture 16.2 FACTOR ∈ (NP ∩ Co-NP)− P.

16.3 Public key cryptograpy

Cryptographic systems are based on keys. To encipher a message you use
the encipher key, and to decipher a message you use the associated decipher
key. A person who has the decipher key is said to decipher a message. A
person who attempts to do the same job without the benefit of the decipher
key is said to decrypt the message.

Traditional cryptography is based on the idea that someone attempting to
decrypt an enciphered message does not have enough information to do so.
The standard traditional cryptosystem is a one-time pad, where a randomly
chosen and agreed on text or number is used as a key, which must only be
used once without giving away information to an adversary. With a one-time
pad, the enciper key and decipher keys are the same.

3

Public key cryptography takes a different viewpoint. The encipher and deci-
pher keys are different, and the strength of the system is based on the idea
that someone trying to decrypt a message does not have enough time. And
that is based on the problem of decrypting a message being a computationally
difficult problem.

Definition 16.4. A public key cryptosystem is described by two functions
E(k, x) andD(j, y) where k is a public encipher key and j is a private decipher
key, such that

1. For every x in a limited range, D(j, E(k, x)) = x and E(k,D(j, x)) = x.
That is, deciphering an enciphered message gives the original message,
and enciphering a deciphered message also gives the original message.

2. There is a polynomial-time algorithm to compute E(k, x) and another
to compute D(j, y).

3. The decryption function D(y) is defined to take y and yield a value x
such that E(k, x) = y; D(y) decrypts without the benefit of j. There
is no polynomial-time algorithm that computes D(y).

It is important to realize that the encipher key k is public, available to anyone.
The strength of a public key cryptosystem is tied to the (at least apparent)
computational difficult of computing D(y).

Several public key cryptosystems are known, and it is not our concern here
to describe one. Rather, let’s ask whether a public-key cryptosystem exists.
Assume that function pair (E(k, x), D(j, y)) is such a cryptosystem. For
simplicity, assume that messages (x and y) are integers. Text can always be
encoded using integers.

Consider the following decision problem DECRYPT determined by the de-
cryption function D(y).

DECRYPT = {(y, i) | D(y) < i}.

DECRYPT must be in NP. As evidence, use the decipher key j. First com-
pute x = D(j, y), then compute z = E(k, x). Accept j as evidence that
(y, i) ∈ DECRYPT provided z = y and x < i. Requirement z = y tells

4

you that j is the correct decipher key and requirement x < i tells you that
D(y) < i.

DECRYPT must also be in Co-NP. The complement of DECRYPT is equiv-
alent to language {(y, i) | D(y) ≥ i}, and almost the same evidence checker
works for that.

So DECRYPT is in NP ∩ Co-NP. But if DECRYPT is in P then there is
a polynomial-time algorithm to compute D(y). Simply use binary search to
search for the smallest i such that D(y) < i. Then D(y) = i− 1. That leads
to the following conclusion.

Theorem 16.3. A public key cryptosystem can only exist if P 6= NP ∩
Co-NP.

It is no accident that public key cryptosystems are based on factoring or on
other problems that are in NP ∩ Co-NP.

16.4 Polynomial Space

Definition 16.5. PSPACE is the class of all decision problems that can be
solved using O(nk) bits of memory for some fixed k, where n is the length of
the input.

It is known that NP ⊆ PSPACE and Co-NP ⊆ PSPACE, and it is con-
jectured that NP 6= PSPACE (and Co-NP 6= PSPACE). Polynomial space
allows a lot of room for computations. Typical exponential-time algorithms
only use a polynomial amount of memory.

A PSPACE-complete problem is one of the hardest problems in PSPACE.

Definition 16.6. A decision problem A if PSPACE-complete if

(a) A is in PSPACE and

(b) X ≤p A for every problem X ∈ PSPACE.

PSPACE is closely related to computations where quantifiers alternate be-
tween universal and existential. For that reason, several PSPACE-complete

5

problems are related to two-person games. The following are some PSPACE-
complete problems.

Definition 16.7. Generalized Checkers is the following decision problem.

Input. A placement of red and black kings on an n×n checkerboard.
Question. Assuming that it is red’s move, does red have a winning
strategy from the given configuration?

Theorem 16.4. Generalized Checkers is PSPACE-complete.

Geography is a game that children can play without any props. A child
thinks of the name of a country (or other chosen category). If the first child
select Sweden, then the next child must select a country name that begins
with N, the last letter of Sweden. Suppose that child chooses Nepal. Now
the next player must choose a country name that starts with L. Countries
cannot be reused, and the first child who cannot think of a country name
loses.

There is a version of Geography that is played on a directed graph. A vertex
is selected as the start vertex s. The first player selects a vertex u where
there is a directed edge from s to u. The second player selects a vertex v
where there is a directed edge from u to v. Play alternates. No vertex that
was previously selected can be selected again.

Definition 16.7. The Generalized Geography problem is the following deci-
sion problem.

Input. A directed graph G with a selected start vertex.
Question. Does the first player have a winning strategy on the game
of Geography played on G?

Theorem 16.5. Generalize Geography is PSPACE-complete.

In practice, PSPACE-complete problems appear very difficult to solve. If the
conjecture that NP 6= PSPACE is true, then PSPACE-complete problems do
not have polynomial-time evidence checkers.

Surprisingly, however, nobody knows whether P = PSPACE. Even the huge
jump from polynomial time to polynomial space is not enough for us to
demonstrate a separation. If you want to prove that P 6= NP, you might
warm up by proving that P 6= PSPACE; that ought to be easier.

6

16.5 Exponential time

Definition 16.8. EXPTIME is the class of decision problems that are
solvable in time O(2nk

) for some fixed k, where n is the length of the input.

Notice that EXPTIME allows an amount of time that is two to a polynomial
in n. It is known that PSPACE ⊆ EXPTIME, and PSPACE is conjectured
to be a proper subset of EXPTIME.

It is known that P 6= EXPTIME. So at least one of the subset relations
P ⊆ NP ⊆ PSPACE ⊆ EXPTIME is surely a proper subset relation. Of
course, they are all conjectured to be proper.

There is a notion of an EXPTIME-complete problem, defined in the usual
way as a hardest problem in EXPTIME.

Definition 16.9. A decision problem A is EXPTIME-complete if

(a) A is in EXPTIME and

(b) X ≤p A for every problem X ∈ EXPTIME.

TRhere are EXPTIME-complete problems. There is a typed programming
language called ML. The ML Type Checking problem is as follows.

Definition 16.10. The ML Type Checking Problem is the following decision
problem.

Input. An ML program p.
Question. Is p well-typed (free of type errors)?

The ML Type Checking Problem is known to be EXPTIME-complete. For-
tunately, ML programmers tend not to write programs that are difficult to
type check. But if you want to, you can write an ML program that will
bring an ML compiler to its knees; in practice, the memory requirements
overwhelm the compiler, and it gives up.

prev

7

	Beyond NP
	Co-NP and the validity problem
	NP Co-NP and factoring
	Public key cryptograpy
	Polynomial Space
	Exponential time

