
prev next

5 Finite-State Machines and Regular Languages

This section looks at a simple model of computation for solving decision
problems: a finite-state machine, or FSM.

5.1 Intuitive idea of a FSM

Figure 5-1 shows a diagram, called a transition diagram, of FSM M1. Each
circle or double-circle is called a state. One of the states, marked by an arrow,
is called the start state. A state with a double circle is called an accepting
state and a state with a single circle is called a rejecting state.

The arrows between states are called transitions , and each transition is la-
beled by a member of the FSM’s alphabet Σ (set {a, b} for M1). For each
state q and each member c of Σ, there must be exactly one transition going
out of q labeled c.

A FSM is used to recognize a language (a decision problem). To “run” a
FSM on string s, start in the start state. Read each character, and follow
the transition labeled by that character to the next state. On input "aabab",
M1 starts in state 1, then hits states 2, 1, 1, 2, 2, ending in state 2.

The end state determines whether the FSM accepts or rejects the string.
Since state 2 is a rejecting state, M1 rejects "aabab". It should be easy to see

Figure 5-1. Transition diagram of FSM M1 that recognizes language
{s ∈ {a, b}∗ | s has an even number of as}. There are two states. State 1
is the start state. State 1 is an accepting state and state 2 is a rejecting
state..

1

Figure 5-2. Transition diagrams of FSM M2, which accepts strings whose
length is divisible by 3.

Figure 5-3. Transition diagrams of FSM M3, which rejects all strings.

that M1 accepts strings with an even number of as and rejects strings with
an odd number of as.

A FSM M with alphabet Σ recognizes the set

L(M) = {s | s ∈ Σ and M accepts s}.

For example, L(M1) = {s | s ∈ {a, b}∗ands has an even number of as}.
Figures 5-2 and 5-3 show two finite-state machines M2 and M3 with alphabet
{a, b} where

L(M2) = {s | |s| is divisible by 3}
L(M3) = {}

5.2 Designing FSMs

There is a simple and versatile way to design a FSM machine to recognize
a selected language L. Associate with each state q the set of strings Set(q)
that end on state q. For example, in machine M2,

Set(0) = {s | |s| ≡ 0 (mod 3)}
Set(1) = {s | |s| ≡ 1 (mod 3)}
Set(2) = {s | |s| ≡ 2 (mod 3)}

2

Figure 5-4. A FSM that recognizes even binary numbers. An empty
string is treated as 0.

Your goals in designing a FSM that recognizes language L are:

(a) Start by deciding what the states will be and what Set(q) will be for
each state. Make sure that, for each state q, either Set(q) ⊆ L or
Set(q) ⊆ L.

(b) Make q be an accepting state if Set(q) ⊆ L and make q a rejecting
state if Set(q) ⊆ L.

(c) Draw transitions so that, if x ∈ Set(q) and there is a transition from
state q to state q′ labeled a, then x · a ∈ Set(q′).

5.2.1 Example: even binary numbers

Figure 5-4 shows a FSM with alphabet {0,1} that accepts all even binary
numbers. For example, it accepts "10010" and rejects "1101". Set(0) =
{s ∈ {0, 1}∗ | s is an even binary number} and Set(1) = {s ∈ {0, 1}∗ | s is
an odd binary number}. The transitions are obvious: adding a 0 to the end
of any binary number makes the number even, and adding a 1 to the end
makes the number odd.

5.2.2 A FSM recognizing binary numbers that are divisible by 3

Figure 5-5 shows a FSM that recognizes binary numbers that are divisible
by 3. For example, it accepts "1001" and "1100", since "1001" is the binary
representation of 9 and "1100" is the binary represention of 12. But it rejects
"100", the binary representation of 4.

3

Thinking of binary strings as representing numbers,

Set(0) = {n | n ≡ 0 (mod 3)}
Set(1) = {n | n ≡ 1 (mod 3)}
Set(2) = {n | n ≡ 2 (mod 3)}

Suppose that m is a binary number that is divisible by 3. Adding a 0 to the
end doubles the number, so m · 0 is also divisible by 3. Adding a 1 to m
doubles m and adds 1. But modular arithmetic tells us that

m ≡ 0 (mod 3) → 2m ≡ 0 (mod 3)

→ 2m+ 1 ≡ 1 (mod 3)

so there is a transition from state 0 to state 1 on symbol 1.

5.2.3 Strings containing at least two as and at most one b.

Figure 5-6 shows a FSM that regognizes language

{w ∈ {a, b}∗ | w contains at least two as and at most one b}.

The idea is to keep track of the number of as (up to a maximum of 2) and
the number of bs (up to a maximum of 2). That suggests that we need nine
states: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) and (2, 2), where
the first number is the count of as and the second the count of bs, and 2
means at least 2. The accepting states and transitions should be obvious.

Figure 5-5. A FSM recognizing binary numbers that are divisible by 3.
An empty string is treated as 0.

4

Figure 5-6. A FSM recognizing strings of as and bs with at least two as
and at most one b.

5.3 Definition of a FSM and the class of regular lan-
guages

The introduction above only shows transition diagrams, and does not ade-
quately say exactly what a FSM is and how to determine the language that
it recognizes. This section corrects that with a careful definition of both.
The first definition says what a FSM is without saying about what it means
to run it on a string.

5.3.1 Definition of a FSM

Definition 5.1. A finite-state machine is a 5-tuple (Σ, Q, q0, F , δ). That
is, it is described by those five parts.

• Σ is the machine’s alphabet.

• Q is a finite nonempty set whose members are called states .

• q0 ∈ Q is called the start state.

• F ⊆ Q is the set of accepting states .

5

• δ : Q× Σ→ Q is called the transition function.

Most of that should be clear from the transition diagrams that we have looked
at. From state q, if you read symbol a, you go to state δ(q, a). Notice that,
because δ is a function, there must be exactly one state to go to from state
q upon reading symbol a.

5.3.2 When does FSM M accept string s?

Consider a FSM M = (Σ, Q, q0, F , δ).

Definition 5.2. If q ∈ Q and x ∈ Σ∗, then q : x is defined inductively as
follows.

1. q : ε= q.

2. If x = cy where c ∈ Σ and y ∈ Σ∗ then q : x = δ(q, c) : y.

The idea is that q : x is the state that M reaches if it starts in state q and reads
string x. To find that out for string x = cy, first find the state q′ = δ(q, c),
then finish by finding q′ : y.

Every FSM M has a language L(M) that it recognizes, and the following
definition says what that is.

Definition 5.3. L(M) = {x ∈ Σ∗ | q0 : x ∈ F}.
That is, M accepts string x if M reaches an accepting state when it is run
on x starting in the start state, q0.

5.3.3 The class of regular languages

Definition 5.4. Language A is regular if there exists a FSM M such that
L(M) = A.

We have see a few regular languages above, including {} and the set of binary
numbers that are divisible by 3.

6

5.4 A theorem about q : x

Notation q : x satisfies a certain kind of associativity.

Theorem 5.1. (q : x) : y = q : (xy).

Proof. The proof is by induction of the length of x. The introduction to
proofs does not cover proof by induction because this is the only such proof
that we need. It suffices to

(a) show that (q : x) : y = q : (xy) for all q and y when |x| = 0, and

(b) show that (q : x) : y = q : (xy) for an arbitrary nonempty string x, un-
der the assumption (called the induction hypothesis) that (r : z) : y =
r : (zy) for any state r, string y and string z that is shorter than x.

Case 1 (|x| = 0). That is, x = ε. By definition, q : ε = q. So

(q : x) : y = q : y

= q : (xy)

because, when x = ε, xy = y.

Case 2 (|x| > 0). A nonempty string x can be broken into x = cz where c
is the first symbol of x and z is the rest.

(q : x) : y = (q : (cz)) : y

= (δ(q, c) : z) : y by the definition of q : (cz)

= δ(q, c) : (zy) by the induction hypothesis

= q : (czy) by the definition of q : (czy)

= q : (xy) since x = cz

5.5 Closure results

A closure result tells you that a certain operation does not take you out of a
certain set. For example, Z is closed under addition because the sum of two
integers is an integer. Z is also closed under multiplication. But Z is not
closed under division, since 1/2 is not an integer.

7

The class of regular languages possesses some useful closure results.

Definition 5.5. Suppose that A ⊆ Σ∗ is a language. The complement A of
A is Σ∗ − A.

Theorem 5.2. The class of regular languages is closed under complemen-
tation. That is, if A is a regular language then A is also a regular lan-
guage. Put another way, for every FSM M , there is another FSM M ′ where
L(M ′) = L(M). Moreover, there is an algorithm that, given M , finds M ′.
That is, the proof is constructive.

Proof. Suppose that M = (Σ, Q, q0, F, δ). Then M ′ = (Σ, Q, q0, Q − F, δ).
That is, simply convert each accepting state to a rejecting state and each
rejecting state to an accepting state.

♦ ♦

Theorem 5.3. The class of regular languages is closed under intersection.
That is, if A and B are regular languages then A∩B is also a regular language.
Put another way, suppose M1 and M2 are FSMs with the same alphabet Σ.
There is a FSM M ′ so that L(M ′) = L(M1) ∩ L(M2). That is, M ′ accepts
x if and only if both M1 and M2 accept x. Moreover, there is an algorithm
that takes parameters M1 and M2 and produces M ′.

Proof. The idea is to make M ′ simulate M1 and M2 at the same time. For
that, we want a state of M ′ to be an ordered pair holding a state of M1 and
a state M2. Recall that the cross product A × B of two sets A and B is
{(a, b) | a ∈ A ∧ b ∈ B}.
Suppose that M1 = (Σ, Q1, q0,1, F1, δ1). and M2 = (Σ, Q2, q0,2, F2, δ2). Then
M ′ = (Σ, Q′, q′0, F

′, δ′) where

Q′ = Q1 ×Q2

q′0 = (q0,1, q0,2)

F ′ = F1 × F2

δ′((r, s), a) = (δ1(r, a), δ2(s, a))

State (r, s) of M ′ indicates that M1 is in state r and M2 is in state s. Transi-
tion function δ′ runs M1 and M2 each one step separately. Notice that the set
F ′ of accepting states of M ′ contains all states (r, s) where r is an accepting

8

state of M1 and s is an accepting state of M2. So M ′ accepts x if and only
if both M1 and M2 accept x.

♦ ♦

Theorem 5.4. The class of regular languages is closed under union. That
is, if A and B are regular languages then A ∪B is also a regular language.

Proof. By DeMorgan’s laws for sets,

A ∪B = A ∩B.

By we know that the class of regular languages is closed under complemen-
tatin and intersection.

prev next

9

	Finite-State Machines and Regular Languages
	Intuitive idea of a FSM
	Designing FSMs
	Example: even binary numbers
	A FSM recognizing binary numbers that are divisible by 3
	Strings containing at least two as and at most one b.

	Definition of a FSM and the class of regular languages
	Definition of a FSM
	When does FSM M accept string s?
	The class of regular languages

	A theorem about q:x
	Closure results

