
prev next

4 Mathematical Foundations

4.1 Sets

You should have seen sets before. This is review.

Additional reading: Cummings Chapter 3 about sets and reasoning about
sets.

Definition 4.1. A set is an unordered collection of things without repeti-
tions. The things in set S are called the members of S.

Definition 4.2. A set enumeration is one way to describe a set, by writing
the members of the set in braces, separated by commas. For example, {2, 5,
9} is a set of three integers.

4.1.1 Finite and Infinite Sets

It is possible to list the members of a finite set. But some sets, such as the
set of all positive integers, have infinitely many members. Here are a few
common infinite sets.

N {0, 1, 2, 3, . . . }

Z {. . . , −2, −1, 0, 1, 2, . . . }

R the set of all real numbers

Note. Mathematicians usually define N to be the set of all positive integers,
and that is what Cummings does. Computer scientists usually define N to
be the set of nonnegative integers because 0 is so important to computer
programs. I will use the definition above, including 0.

1

4.1.2 Set Comprehensions

A set comprehension is a way to describe the set of all values that have a
certain property. Notation

{x | p(x)}

stands for the set of all values x such that p(x) is true and notation

{f(x) | p(x)}

stands for the set of all values f(x) such that p(x) is true. Notation

{x ∈ S | p(x)}

is shorthand for {x | x ∈ S ∧ p(x)} Here are some examples.

Set Description

{x | x ∈ R ∧ x2 − 2x + 1 = 0} {−1, 1}

{x ∈ R | x2 − 2x + 1 = 0} {−1, 1}

{x | x is an even positive integer} {2, 4, 6, . . .}

{x2 | x is an even positive integer} {4, 16, 36, . . .}

4.1.3 Set Notation and Operations

Table 4.1 defines notation for sets.

Note. Mathematicians commonly use operator \ to mean set difference, and
that is what Cummings does. That is, Cummings defines S \T to be the set
of all members of S that are not members of T . Computer scientists usually
write S − T for set difference.

4.1.4 Identities for Sets

Table 4.2 lists some identities that are easy to establish.

2

Table 4.1

Notation Meaning

|S| The cardinality (size) of S, when S is a finite set.

{} The empty set, which has no members

x ∈ S True if x is a member of set S. For example, 2 ∈ {1, 2, 3, 4}

x 6∈ S ¬(x ∈ S)

S ∪ T {x | x ∈ S ∨ x ∈ T}. For example, {2, 5, 6} ∪ {2, 3, 7} = {2,
3, 5, 6, 7}. This is called the union of sets S and T .

S ∩ T {x | x ∈ S ∧ x ∈ T}. For example, {2, 5, 6} ∪ {2, 3, 7} =
{2}. This is called the intersection of sets S and T .

S − T {x | x ∈ S ∧ x 6∈ T}. For example, {2, 5, 6} − {2, 3, 7} = {5,
6}. This is called the difference of sets S and T .

S U −S, where U is the universe of discourse. This is called the
complement of S.

S × T {(x, y) | x ∈ S∧y ∈ T}. For example, {2, 3}×{5, 6} = {(2,5),
(2,6), (3,5), (3,6)}. This is called the cartesian product of S
and T .

S ⊆ T This is true if ∀x(x ∈ S → x ∈ T). For example, {2, 4, 6} ⊆
{1, 2, 3, 4, 5, 6}. Notice that {2, 4, 6} ⊆ {2, 4, 6}. S ⊆ T is
read “S is a subset of T .”

S = T S and T are the same set if S ⊆ T and T ⊆ S. That is, S
and T have exactly the same members.

3

Table 4.2

Some Set Identities

A ∪ {} = A

A ∩ {} = {}

A = A

A ∪B = B ∪ A

A ∩B = B ∩ A

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

A ∪B = A ∩B

A ∩B = A ∪B

A−B = A ∩B.

A ∪ (A ∩B) = A

A ∩ (A ∪B) = A

4

4.1.5 Sets of Sets

The members of sets can be sets. For example, if S = {{1, 2, 3}, {2, 4, 6}}
then |S| = 2, since S has exactly two members, {1, 2, 3} and {2, 4, 6}.
Do not confuse ∈ with ⊆. If S = {{1, 2, 3}, {2, 4, 6}} then

{1, 2, 3} ∈ S

{1, 2, 3} 6⊆ S

3 6∈ S

Notice that {} 6= {{}}. |{}| = 0 but |{{}}| = 1 since {{}} has one member,
the empty set.

4.2 Alphabets and Strings

Definition 4.3. An alphabet is a finite, nonempty set whose members we
call symbols .

We will usually want to use small alphabets such as {a, b} or {a, b, c}, where
symbols a, b and c stand for themselves (letters of an alphabet).

It is conventional to call an alphabet Σ (upper case Greek letter sigma,
indicating symbol).

Definition 4.4. If Σ is an alphabet, then a string over Σ is a finite sequence
members of Σ. (In a sequence, order matters and there can be repetitions.)
A string can have length 0.

I will write strings in double-quotes. For example, if Σ = {a, b, c} then "aab"
and "ccccc" are two strings over Σ.

A fundamental operations on strings is concatenation, where s · t indicates s
followed by t. For example, "abc" ·"aba" = "abcaba". Just as the multiplica-
tion symbol is usually unwritten between numbers, we will usually omit the
concatenation dot between strings and write st to mean s · t.
We will allow concatenation to work with symbols as well as strings. For
example, "aab" · a = "aaba".

5

When the alphabet is understood or unimportant, we talk about a string ,
leaving the alphabet unstated.

Definition 4.5. If s is a string, then |s| is the length of s (the number of
characters in s). For example, |"accb"| = 4 and |"b"| = 1.

Definition 4.6. We write ε to mean the empty string, "", whose length is
0. (Symbol ε is a variant of Greek letter epsilon. Think of it as e for empty.)

4.2.1 Sets of Strings

Definition 4.7. A set of strings is called a language.

Definition 4.8. If Σ is an alphabet, then Σ∗ is the set of all strings over Σ.
For example, {a, b}∗ = {ε, "a", "b", "aa", "ab", "ba", "bb", "aaa", . . . }.

4.2.2 Natural Numbers as Strings

We will use strings as the inputs and outputs of algorithms or programs. But
sometimes, we want the inputs and outputs to be integers. That is easy to
manage: we write the integers in standard (base 10) notation as strings. For
example, 25 is treated as string is "25".

4.3 Functions

You should have seen functions before. This is review.

Definition 4.9. If A and B are sets, then a function with domain A and
codomain B associates exactly one value in set B with each value in set A.
We write f : A → B to mean that f is a function with domain A and
codomain B.

Definition 4.10. If f : A→ B and x ∈ A, then notation f(x) indicates the
member of B that f associates with x. When f(x) = y, we say that f maps
x to y.

For example, suppose that f : N → N is defined by f(x) = x2. Then f(3)
= 9 and f(5) = 25.

6

4.4 Computational Problems

We will look at two kinds of computational problems.

1. A decision problem is a problem where the input is a string (over a
chosen input alphabet) and the output is either 1 (true) or 0 (false).
We can also think of the output as yes or no.

A decision problem can be expressed as a function or as a set of strings
(a language). When S is a set of strings, we think of S as the decision
problem:

Input. String x over the input alphabet.

Question. Is x ∈ S?

Most of the problems that we look at will be decision problems.

2. A functional problem is a problem where the input is a string (over the
input alphabet) and the output is a string (over the output alphabet).

4.5 Types

We will deal with several different types of things. It is essential that you
know what type of thing each of your variables (or, in general, names) is.

Adjectives or other terms that we define can only be applied to certain types
of things. For example, it makes sense to talk about the cardinality of a set,
but not the cardinality of a number. The following is a list of some of the
types of things that we will use.

7

Type Meaning

boolean A boolean value is either true or false. It might
equally well be either 1 or 0, or either yes or no.

symbol A symbol is a member of some alphabet.

string A string is a (possibly empty) finite sequence of
symbols

language A language is a set of strings. We can think of a
language as a decision problem.

function Our functions will usually either take a string and
yield a boolean value or will take a string and yield
a string.

set of languages A set of languages is called a class . We think of a
language as a decision problem, and we will iden-
tify classes of decision problems that can be solved
in particular ways.

prev next

8

	Mathematical Foundations
	Sets
	Finite and Infinite Sets
	Set Comprehensions
	Set Notation and Operations
	Identities for Sets
	Sets of Sets

	Alphabets and Strings
	Sets of Strings
	Natural Numbers as Strings

	Functions
	Computational Problems
	Types

