prev next

2 Review of First-Order Logic

First-order logic (also called *predicate logic*) is an extension of propositional logic that is much more useful than propositional logic. It was created as a way of formalizing common mathematical reasoning. You should have seen first-order logic previously. This section intended to be review.

In first-order logic, you start with a nonempty set of values called the universe of discourse U. Logical statements talk about properties of values in U and relationships among those values.

2.1 Predicates

In place of propositional variables, first-order logic uses *predicates*.

Definition 2.1. A predicate P takes zero or more parameters x_1, x_2, \ldots, x_n and yields either true or false. First-order formula $P(x_1, \ldots, x_n)$ is the value of predicate P with parameters x_1, \ldots, x_n . A predicate with no parameters is a propositional variable equivalent to a propositional variable.

Suppose that U is the set of all integers. Here are some examples of predicates. There is no standard collection of predicates that are always used. Rather, each of these is like a function definition in a computer program; different programs contain different functions.

- We might define even(n) to be true if n is even. For example even(4) is true and even(5) is false.
- We might define greater(x, y) to be true if x > y. For example, greater(7,3) is true and greater(3,7) is false.
- We might define increasing (x, y, z) to be true if x < y < z. For example, increasing (2, 4, 6) is true and increasing (2, 4, 2) is false.

We allow binary relations such = and < as predicates. For example, $x = y \rightarrow y < z$ is a formula of first-order logi.

2.2 Terms

A *term* is an expression that stands for a particular value in U. The simplest kind of term is a *variable*, which can stand for any value in U.

A function takes zero or more parameters that are members of U and yields a member of U. The following are examples of functions that might be defined when U is the set of all integers.

- A function with no parameters is called a *constant*. We allow constants such as 0 and 1.
- We might define successor(n) to be n+1. For example, successor(2) = 3.
- We might define sum(m, n) to be m + n. For example, sum(5, 7) = 12.
- We might define largest(a, b, c) to be the largest of a, b and c. For example, largest(3, 9, 4) = 9 and largest(4, 4, 4) = 4.

Definition 2.2. A *term* is defined as follows.

- 1. A *variable* is a term. We use single letters such as x and y for variables.
- 2. If f is a function that takes no parameters then f is a term (standing for a value in U).
- 3. If f is a function that takes n > 0 parameters and t_1, \ldots, t_n are terms then $f(t_1, \ldots, t_n)$ is a term.

For example, sum(sum(x, y), successor(z)) is a term.

We allow notation such as x + y and x - y as terms. That is, a function can be written as a binary operator. That is just a notational convenience.

The meaning of a term should be clear, provided the values of variables are known. Term sum(x, y) stands for the result that function sum yields on parameters (x, y) (the sum of x and y).

2.3 First-Order Formulas

Definition 2.3. A *first-order formula* is defined as follows.

- 1. T and F are first-order formulas.
- 2. If P is a predicate that takes no parameters then P is a first-order formula.
- 3. If t_1, \ldots, t_n are terms and P is a predicate that takes n > 0 parameters, then $P(t_1, \ldots, t_n)$ is a first-order formula. It is true if $P(v_1, \ldots, v_n)$ is true, where v_1 is the value of term t_1, v_2 is the value of term t_2 , etc.
- 4. If t_1 and t_2 are terms then $t_1 = t_2$ is a first-order formula. (It is true if terms t_1 and t_2 have the same value.)
- 5. If A and B are first-order formulas and x is a variable then each of the following is a first-order formula.
 - (a) (A)
 - (b) $\neg A$
 - (c) $A \vee B$
 - (d) $A \wedge B$
 - (e) $A \rightarrow B$
 - (f) $A \leftrightarrow B$
 - (g) $\forall x A$
 - (h) $\exists x A$

The meaning of parentheses, \mathbf{T} , \mathbf{F} , \neg , \vee , \wedge , \rightarrow and \leftrightarrow are the same as in propositional logic. Symbols \forall and \exists are called *quantifiers*. You read $\forall x$ as "for all x", and $\exists x$ as "for some x" or "there exists an x". They have the following meanings.

- 1. $\forall x A$ is true of A is true for all values of x in U.
- 2. $\exists x A$ is true if A is true for at least one value of x in U.

By convention, quantifiers have higher precedence than all of the operators \land , \lor , etc.

Examples of first-order formulas are:

- 1. P(sum(x,y)) says that, if v = sum(x,y), then P(v) is true. Its value (true or false) depends on the meanings of predicate P and function sum, as well as on the values of variables x and y.
- 2. $\forall x (\operatorname{greater}(x, x))$ says that $\operatorname{greater}(x, x)$ is true for every value x in U. Using the meaning of $\operatorname{greater}(a, b)$ given above, $\forall x (\operatorname{greater}(x, x))$ is clearly false, since no x can be greater than itself.
- 3. $\neg \forall x (\text{greater}(x, x))$ says that $\forall x (\text{greater}(x, x))$ is false. That is true.
- 4. $\exists y(y = \text{sum}(y, y))$ says that there exists a value y where y = y + y. That is true since 0 = 0 + 0.
- 5. $\forall x(\exists y(\text{greater}(y,x)))$ says that, for every value v of x, first-order formula $\exists y(\text{greater}(y,v))$ is true. That is true. If v=100, then choose y=101, which is larger than 100. If v=1000, choose y=1001. If v=1,000,000, choose y=1,000,001.
- 6. $\exists y(\forall x(\text{greater}(y,x)))$ says that there exists a value v of y so that $\forall x(\text{greater}(v,x))$. That is false. There is no single value v that is larger than every integer x.

prev next