
prev next

17 Examples of NP-Complete Problems

17.1 SAT

Section 15.4 defines the Satisfiability Problem for Propositional Logic (SATPL).
We have seen that SATPL is in NP, and noticed in (Section 14) that SATPL
appears to be difficult to solve.

Here, we look at a restriction of that problem to clasual propositional for-
mulas. (The restriction can only make the problem easier, if anything.)

Definition 17.1. A literal is either a propositional variable or its negation.
We will use lower-case letters such as x, y and z as propositional variables.
Rather than writing ¬y to indicate negated variable y, we write y. Literal x
is a positive literal and y is a negative literal .

Definition 17.2. A clause is a disjunction (∨) of one or more literals. For
example, x ∨ z ∨ y is a clause. A literal by itself is a clause with just one
literal.

Definition 17.3. A clausal formula is a conjunction (∧) of one or more
clauses. For example, (x) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) is a clausal formula. There
can be just one clause.

Definition 17.4. SAT is the following decision problem.

Input. A clausal propositional formula φ.
Question. Is φ satisfiable?

For example, is (x) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) satisfiable? Of course: choose x, y
and z all to be true. It is easy to check whether short propositional formulas
are satisfiable. It is the long formulas that present difficulties!

Theorem 17.5. SAT ∈ NP.

Proof. Theorem 15.5 shows that SATPL is in NP. But SAT is a restriction
of SATPL. The evidence checker for SATPL also works for SAT.

1



♦

Cook and Levin independently showed that SAT is NP-complete. The proof
is too long for this course, so we will need to accept it as proved.

Theorem 17.6. (Cook/Levin Theorem) SAT is NP-complete.

That gives us evidence (but not a proof, since we don’t know whether P 6=
NP) that there is no polynomial-time algorithm for SAT.

17.2 Proving NP-Completeness

SAT is proved NP-complete using a difficult kind of reduction called a generic
reduction. If all you know about X is that X ∈ NP, you can ask someone to
give you an evidence checker for X. The generic reduction from X to SAT
converts that evidence checker into a propositional formula. You can think
of it as building a simple computer from logic gates that do nots, ands and
ors.

But we don’t need to do a generic reduction for every proof of NP-completeness.

Theorem 17.7. Suppose that language B ∈ NP, A is NP-complete and
A ≤p B. Then B is NP-complete.

Proof. B ∈ NP, so it suffices to show that X ≤p B for every language
X ∈ NP. Since A is NP-complete, we know that X ≤p A for every language
X ∈ NP. But A ≤p B and relation ≤p is transitive (Theorem 16.4), so
X ≤p B for every language X ∈ NP.

♦

17.3 3-SAT

We can restrict the satisfiability problem further.

Definition 17.8. A propositional formula is in 3-clausal form if it is in
clausal form and has exactly 3 literals per clause. For example, (x∨ y ∨ z)∧

2



(y ∨ z ∨ w) is in 3-clausal form. A propositional formula in 3-clausal form is
called a 3-clausal propositional formula.

Definition 17.9. 3-SAT is the following decision problem.

Input. A 3-clausal propositional formula φ.
Question. Is φ satisfiable?

Theorem 17.10. 3-SAT is NP-complete.

Proof. Clearly, 3-SAT is in NP. (Use the same evidence checker as for
SATPL.) So, by Theorem 17.7, it suffices to reduce SAT to 3-SAT.

We need a polynomial-time algorithm that takes a clausal formula φ and
builds a 3-clausal formula φ′ such that φ is satisfiable if and only if φ′ is
satisfiable. Our algorithm will convert each clause of φ separately.

Clauses that already have 3 literals are left alone. Clauses with fewer than 3
literals are easy to deal with by duplicating one or more of the literals. For
example, clause (A ∨B) is equivalent to (A ∨ A ∨B).

That only leaves long clauses , which have more than 3 literals. As long as
there is at least one long clause, we find one with n > 3 literals and replace it
by a clause that has n− 1 literals, plus a clause with 3 literals. By repeating
that, we can get rid of all of the long clauses. It is just a matter of ensuring
that each step preserves satisfiability.

Suppose that φ contains clause

C = (`1 ∨ `2 ∨ · · · ∨ `n)

where n > 3. Create a new variable u and replace C by pair of clauses

C ′ = (`1 ∨ · · · ∨ `n−2 ∨ u) ∧ (u ∨ `n−1 ∨ `n)

yielding new formula φ1. We need to show that φ1 is satisfiable if and only
if φ is satisfiable, showing that the modification of φ preserves satisfiability.

Claim 1. If φ1 is satisfiable then φ is satisfiable. In fact, every truth-value
assignment that satisfies φ1 also satisfies φ.

Proof of Claim 1. Suppose φ1 is satisfiable. Choose a truth-value assign-
ment a that makes φ1 true. That assignment must make all of the clauses
other than C in φ true, since those clauses also occur in φ1. We just need to

3



argue that assignment a also makes clause C true. Be sure to notice that,
because a makes all clauses in φ1 true, it makes both clauses in C ′ true.

Suppose a(u) = F. Then, because a makes clause (`1 ∨ · · · ∨ `n−2 ∨u) true, a
must make at least one of `1, . . . , `n−2 true. But that means a makes clause
C true.

Suppose that a(u) = T. Then, because a makes clause (u ∨ `n−1 ∨ `n) true,
a makes at least one of `n−1 and `n true. Again, a makes clause C true.

Claim 2. If φ is satisfiable then φ1 is satisfiable.

Proof of Claim 2. Suppose that φ is satisfiable, and choose a truth-value
assignment a that makes φ true. Clause C must have at least one true literal.

If a makes `i true where i ≤ n− 2, then extend a by adding u = F. The new
truth-value assignment makes clause (`1 ∨ · · · ∨ `n−2 ∨ u) true because `i is
true, and it makes clause (u ∨ `n−1 ∨ `n) true because u = F.

If a makes `i true where i > n− 2, then extend a by adding u = T. You can
check that both clauses of C ′ must be true.

♦

17.4 The Vertex Cover Problem

Recall from Section 15.4.2 that a vertex cover of a simple graph is a set C
of vertices so every edge is incident on at least one vertex in C. The Vertex
Cover Problem VCP is the following decision problem.

Input. A simple graph G and a positive integer k.
Question. Does there exist a vertex cover C of G where |C| ≤ k?

It is worth asking whether there is an obvious polynomial-time algorithm for
VCP. One idea is to use a greedy algorithm, which tries to optimize globally
by optimizing locally. Since we want to select as few vertices as possible
to cover all of the edges, it makes sense to start by selecting a vertex with
highest degree, since it covers as many edges as possible with the first pick.
After that, remove the selected vertex and all of the edges that it covers, and
repeat, again selecting a vertex with the highest degree.

4



That algorithm seems appealing, but does it work? Look at graph G1 in
Figure 17.1. The diagram shows a vertex cover of G1 of size 5, but G1 also
has a vertex cover of size 4. (Can you find it?) G1 has a vertex of degree 4,
and all other vertices have degree 2 or 3. But the degree 4 is not part of any
smallest vertex cover of G1! If you are trying to determine whether G1 has a
vertex cover of size at most 4, you will be led astray by selecting the degree
4 vertex. Something is wrong with the greedy Vertex Cover algorithm.

It is tempting to try to patch the greedy algorithm. But is that worthwhile?
The following theorem shows that it is a waste of time.

Theorem 17.11. VCP is NP-complete.

If the conjecture P 6= NP is true then there does not exist a polynomial-time
algorithm for VCP. Even if the conjecture is wrong, finding a polynomial-
time algorithm for VCP is as difficult as proving that P = NP, since the
existence of such an algorithm implies P = NP.

Proof of Theorem 17.11 Section 15.4.2 shows that VCP is in NP. We
only need to reduce a known NP-complete problem to VCP. Let’s show that
3-SAT ≤p VCP.

We need a polynomial-time algorithm that takes a propositional formula φ in
3-clausal form and builds a pair consisting of a simple graph G and a positive
integer k, where φ is satisfiable if and only if G has a vertex cover of size at
most k.

The first step is construction of G. There are three parts. Part 1 consists of
a pair of vertices for each variable that occurs in φ, which we call a vertex
gadget . If x is a variable, add the following, where one vertex is labeled x
and the other is labeled x.

��������x x

Part 2 consists of three vertices for each clause of φ, all connected to one
another and labeled by the three literals in the clause, which we call a clause
gadget . For clause (x ∨ y ∨ z), we add

5



����
����

�����
�
��

T
T
TT

x z

y

Part 3 does not add any vertices, but adds edges between part 1 vertices and
part 2 vertices. Specifically, each part 2 vertex is connected to the part 1
vertex that has the same label.

Here is an example. Suppose

φ = (x ∨ y ∨ z) ∧ (y ∨ z ∨ w).

Then graph G looks like this:

��������x x ��������y y ��������z z ��������w w

����
����

�����
�
��

T
T
TT

x

y

z ����
����

�����
�
��

T
T
TT

y

z

w
C
C
C
C
C
C
C
C

�
��

�
�
�
�
�
�
�
�

B
B
B
B
B
B
B
B

That finishes the description of G. Suppose that φ has v variables and c
clauses. Any vertex cover of G will need to have size at least v + 2c, one to
cover each vertex gadget and two to cover each clause gadget. Let’s choose
k = v + 2c, not leaving any room for extra vertices in the vertex cover.

We need to prove that G has a vertex cover of size v + 2c if and only if φ is
satisfiable. Let’s do that in two parts, proving the ’if’ and the ’only if’ parts
separately.

Claim 1. If φ is satisfiable then G has a vertex cover of size v + 2c.

Proof of Claim 1. Suppose φ is satisfiable, and let a be a truth-value
assignment that makes φ true. Here is how to select a vertex cover of G of
size v + 2c.

6



(a) For each variable x, if a(x) = T then select the vertex gadget-vertex
labeled x. Otherwise, select the vertex-gadget vertex labeled x. That
puts one vertex for each vertex gadget in the vertex cover, which covers
the edges within vertex gadgets.

(b) For each clause C = (`1 ∨ `2 ∨ `3), find a literal `i that truth-value
assignment a makes true. Select the clause gadget vertices that corre-
spond to the other two literals, leaving the vertex labeled `i unselected.
That covers all edges within clause gadgets.

There is no room to select any more vertices, so the part 3 edges between
clause gadgets and vertex gadgets need to be covered by the vertices that have
already been selected. The unselected vertex u in a clause gadget corresponds
to a true literal `i (under truth-value assignment a). A part 3 edge connects
u to a vertex-gadget vertex v labeled `i, and, since `i is true, vertex v was
selected, and edge {u, v} is covered by v. No more vertices need to be added.

Claim 2. If G has a vertex cover of size v + 2c then φ is satisfiable.

Proof of Claim 2. Suppose G has a vertex cover S of size v+ 2c. We know
that S must select exactly one vertex from each vertex gadget and exactly
two vertices from each clause gadget. Define truth-value assignment a so that
a(x) = T if the vertex-gadget vertex labeled x is in S, and choose a(x) = F
if the vertex-gadget vertex labeled x is in S.

Consider a clause gadget C. It must have one vertex u that is not in vertex
cover S. Suppose u is labeled by literal `. There is an edge in G between
u and a vertex-gadget vertex v that is also labeled `. Since S is required to
cover all edges, and S does not contain u, S must contain v.

But truth-value assignment a has been defined so that literal ` is true; that
is, if v is labeled x then a(x) = T, and if v is labeled x then a(x) = F, making
x true. Therefore, the clause of φ that corresponds to clause gadget C has a
true literal, namely `.

The two claims show that the algorithm described above is a mapping re-
duction from 3-SAT to VCP. (It should be obvious that the algorithm runs
in polynomial time.)

♦

7



y
i
y i
y
i
yi
y

@
@@ �

��

@
@@�

��

B
B
B
B

B
B
B
B

����

��
��

Figure 17.1 Graph G1. The solid vertices are an independent set of G1

and the empty circles are a vertex cover of G1.

17.5 The Independent Set Problem

Definition 17.12. Suppose G = (V,E) is a simple graph. An independent
set of G is a set S ⊆ V such that no two members of S are connected by an
edge. That is, if u and v are different members of S, then{u, v} 6∈ E.

Definition 17.13. The Independent Set Problem (ISP) is the following
decision problem.

Input. A simple graph G = (V,E) and a positive integer k.
Question. Does G have an independent set of size at least k?

Look at graph G1 in Figure 17.1. Some vertices are solid black and some are
circles. Notice that the solid vertices are a vertex cover of G and the empty
circles are an indenpendent set of G. Is that a coincidence? Think about it.

Theorem 17.14. Suppose G = (V,E) is a simple graph and S ⊆ V . S is a
vertex cover of G if and only if S is an independent set of G.

Proof. Suppose that G = (V,E). Saying that S is a vertex cover of G is
equivalent to the following logical statement.

∀u∀v({u, v} ∈ E → (u ∈ S ∨ v ∈ S)).

Using the law of the contrapositive, that is equivalent to

∀u∀v(¬(u ∈ S ∨ v ∈ S)→ {u, v} 6∈ E).

Using DeMorgan’s law and the definition of S, that is equivalent to

∀u∀v((u ∈ S ∧ v ∈ S)→ {u, v} 6∈ E).

8



That is exactly what it means for S to be an independent set of G.

♦

Theorem 17.15. VCP ≤p ISP.

Proof. Suppose that G has n vertices. For any set of vertices S of G,
|S| = n−|S|. That means f(G, k) = (G, n−k) is a polynomial-time reduction
from VCP to ISP, since

(G, k) ∈ VCP ↔ G has a vertex cover of size at most k

↔ G has an independent set of size at least n− k
↔ (G, n− k) ∈ ISP

♦

Corollary 17.16. ISP is NP-complete.

Proof. It is clear that ISP ∈ NP. Theorem 17.15 shows that known NP-
complete problem VCP polynomial-time reduces to ISP.

♦

17.6 The Clique Problem

Another NP-complete problem about graphs is the Clique Problem.

Definition 17.17. Suppose that G = (V,E) is a simple graph. A set S ⊆ V
is a clique if every pair of vertices in S are adjacent. That is, S is a clique if
for all pairs of different vertices u and v in S, {u, v} ∈ E.

Definition 17.18. The Clique Problem (CP) is the following decision prob-
lem.

Input. A simple graph G and a positive integer k.
Question. Does G have a clique of size at least k?

Definition 17.19. Suppose G = (V,E) is a simple graph. Then G = (V,E)
is the complement of G, formed by complementing the set of edges. That is,
G has an edge between different vertices u and v if and only if G does not
have an edge between u and v.

9



The following Theorem 17.20 is immediate from the definitions of indepen-
dent sets and cliques.

Theorem 17.20. SupposeG = (V,E) is a simple graph. S is an independent
set of G if and only if S is a clique of G.

Theorem 17.21. ISP ≤p CP

Proof. By Theorem 17.20, function f(G, k) = (G, k) is a polynomial-time
reduction from ISP to CP.

♦

17.7 The Subset Sum Problem

The Subset Sum Problem is a generalization of the Partition Problem that
we looked in Section 15.

Definition 17.22. The Subset Sum Problem (SSP) is the following decision
problem.

Input. A list x1, . . . , xn of positive integers and a positive integer K.
Question. Does there exist an index set I ⊆ {1, . . . , n} so that∑

i∈I
xi = K?

We will show that SSP is NP-complete by showing that SSP is in NP and
that 3-SAT ≤p SSP.

Theorem 17.23. SSP ∈ NP.

Proof. The question in the definition of SSP is a question of existence. That
suggests using I, the thing whose existence is questioned, as the evidence.
Here is a polynomial-time evidence checker for SSP.

Evidence checker for SSP

Input. List x1, . . . , xn of positive integers and posi-
tive integer K

Evidence. Index set I ⊆ {1, . . . , n}
Requirement.

∑
i∈I

xi = K?

10



♦

Theorem 17.24. 3-SAT ≤p SSP.

Proof. Like the proof of Theorem 17.11, showing that 3-SAT ≤p VCP,
this proof requires some thought and some gadgetry. A polynomial-time
reduction from 3-SAT to SSP is a polynomial-time computable function
f(φ) = (L,K) where φ is a propositional formula in 3-clausal form, L = x1,
. . . , xn is a list of positive integers and K is a positive integer so that φ is
satisifiable if and only if (L,K) ∈ SSP.

Writing a program for the reduction is not very informative. It is much easier
to understand the reduction from an example. Suppose that φ is

(x ∨ y ∨ z) ∧ (y ∨ z ∨ w) ∧ (w ∨ x ∨ z)

with clauses c1, c2 and c3. The result (L,K) of f(φ) is shown in Figure 17.2.
List L is broken into two parts.

Part 1 of list L has two numbers Nx and Nx for each variable x. Think of
those numbers written in base 10, with each number having two sections, the
variable section and the clause section. The variable section has a column
for each variable and the clause section has a column for each clause.

1. In the variable section, Nx and Nx each have a 1 in the column for x,
with all other digits in the variable section being 0.

2. In the clause section, Nx has a 1 in column ci if x occurs in clause ci,
and it has a 0 in column ci otherwise. Similarly, Nx has a 1 in column
ci if x occurs in clause ci, and a 0 in column ci otherwise.

Part 2 of list L has two numbers Pi,1 and Pi,2 for each clause ci, which both
contain only a 1 in the column that corresponds to ci, as shown in Figure
17.2. They are used as padding.

We need to show that φ is satisfiable if and only if there is a way to select
numbers from list L whose sum is exactly K. As before, we prove the ’if’
part and the ’only if’ part separately.

Claim 1. If φ is satisfiable then there is a way to select numbers from list
L whose sum is K.

11



w z y x c1 c2 c3
Nx: 1 1 0 0
Nx: 1 0 0 1
Ny: 1 0 1 0 0
Ny: 1 0 0 1 0
Nz: 1 0 0 0 1 1
Nz: 1 0 0 1 0 0
Nw: 1 0 0 0 0 0 1
Nw: 1 0 0 0 0 1 0
P1,1: 1 0 0
P1,2: 1 0 0
P2,1: 0 1 0
P2,2: 0 1 0
P3,1: 0 0 1
P3,2: 0 0 1
K: 1 1 1 1 3 3 3

Figure 17.2. List L consists of Nx and Nx for each variable x plus Pi,1

and Pi,2 for each clause ci. Numbers are written in base 10. Notice that
the sum can never involve a carry since there are no more than five 1s in
any column.

12



Proof of Claim 1. Suppose that a is a truth-value assignment that makes
φ true. It tells which numbers to select to make a sum of K. First, select
a true literal from each clause. If literal x is selected, put Nx into the list
of selected numbers. If literal x is selected, put Nx into the list of selected
numbers. If neither x nor x is selected, it does not matter; put Nx into the
list of selected numbers.

Notice that the sum of the selected numbers has exactly one 1 in each column
of the variable section, so the variable section of the sum K is correct.

Now we need to make sure the section of K consisting of 3’s is correct.
Because each clause contains a true literal, there must be at least one 1 in
each clause column. But the total number of 1s in a single clause column
in part 1 can be at most 3 since each clause contains 3 literals. If a clause
column has one 1, then select both of the padding (part 2) numbers for that
column to make a total of exactly 3. If there are two 1’s, select one of the
padding numbers. If there are three 1’s, do not select any of the padding
numbers for that clause.

The sum of the selected numbers is exactly K.

Claim 2. If it is possible to select numbers from list L whose sum is K then
φ is satisfiable.

Proof of Claim 2. Because each variable column must sum to 1, exactly
one of Nx and Nx must have been chosen for each variable x. Define truth-
value assignment a so that a(x) = T if Nx is selected and a(x) = F if Nx is
selected.

The selected numbers must sum to 3 in each clause column. At most two 1s
in column i can come from padding numbers. The third must come from Nx,
where x occurs in clause ci, or from Nx where x occurs in clause ci. That
means ci contains a true literal under truth-value assignment a.

The two claims show that the algorithm described above is a mapping re-
duction from 3-SAT to SSP. It should be obvious that the algorithm runs in
polynomial time.

♦

13



17.8 Graph Coloring Problems

Let’s look at some known NP-complete problems without proving them NP-
complete.

Definition 17.25. Suppose that G is a simple graph and k is a positive
integer. Say that G is k-colorable if it is possible to color each vertex of G
with one of k colors so that no two adjacent vertices have the same color.

Definition 17.26. The Graph Coloring Problem is the following decision
problem.

Input. A simple graph G and a positive integer k.
Question. Is G k-colorable?

The Graph Coloring Problem is clearly in NP. The question asks whether
there exists a way to color the vertices of G so that no two adjacent vertices
have the same color. The obvious evidence to request is the coloring.

Evidence checker for Graph Coloring

Input Simple graph G and positive integer k.

Evidence Assignment A of one of k colors to each ver-
tex of G.

Requirement Every edge of G connects two vertices that
are assigned different colors in color assign-
ment A.

If you try to color some graphs by hand, you can get an idea of how difficult
Graph Coloring can be. The Graph Coloring Problem is known to be NP-
complete. In fact, it is NP-complete even if k is fixed at 3.

Definition 17.27. The 3-Coloring Problem is the following decision prob-
lem.

Input. A simple graph G.
Question. Is G 3-colorable?

Graph Coloring is so difficult, it can even be restricted further and remain
NP-complete. A graph is planar if it can be drawn in the plane (on a piece
of paper, if you like) so that no two edges cross one another.

14



Definition 17.28. The Planar 3-Coloring Problem is the following decision
problem.

Input. A planar simple graph G.
Question. Is G 3-colorable?

The Planar 3-Coloring Problem is NP-complete. But that does not mean
that all graph coloring problems are NP-complete. For example, 2-coloring
is easy. (Try an example.) Also, if G is known to be a planar graph, then
4-coloring is trivial: the answer is always yes, by the following.

Theorem 17.29. (The 4-Color Theorem) Every planar graph is 4-
colorable.

17.9 Hamilton Cycles and Hamilton Paths

Definition 17.30. Suppose that G is a simple graph. A simple cycle in G is
a cycle that does not contain any vertex more than once. A Hamilton Cycle
is a simple cycle that contains every vertex.

Not every graph has a Hamilton cycle. You should be able to find a graph
that has a Hamilton cycle and another that does not.

Definition 17.31. The Hamilton Cycle Problem is the following decision
problem.

Input. A simple graph G.
Question. Does G have a Hamilton cycle?

Imagine that G has been drawn on paper (possibly with edges crossing). The
Hamilton Cycle Problem asks whether it is possible to draw a cycle, following
the edges, that hits every vertex exactly once, without lifting your pencil off
the paper.

It is easy to show that the Hamilton Cycle Problem is in NP. The obvious
evidence is a Hamilton cycle.

15



Evidence checker for Hamilton Cycle

Input Simple graph G with n vertices.

Evidence Sequence v1, . . . , vn of vertices of G.

Requirement v1, . . . , vn−1 contains every vertex exactly
once, v1 = vn and for i = 1, . . . , n − 1,
{vi, vi+1} is an edge of G.

The Hamilton Cycle Problem is known to be NP-complete. A related prob-
lem, also NP-complete, is the Hamilton Path Problem.

Definition 17.32. Suppose that G is a simple graph. A simple path in G is
a path that does not contain any vertex more than once. A Hamilton Path
is a simple path that contains every vertex (exactly once).

Definition 17.33. The Hamilton Path Problem is the following decision
problem.

Input. A simple graph G.
Question. Does G have a Hamilton path?

17.9.1 Euler Cycles

A problem that is at least superficially related to the Hamilton Cycle Prob-
lem is the Euler Cycle Problem. (Leonard Euler’s last name is pronounced
“Oiler”.)

Definition 17.34. Suppose that G is a simple graph. An Euler Cycle in G is
a cycle that uses each edge exactly once. (The cycle can contain a particular
vertex several times.)

Not every graph has an Euler cycle. You should be able to find a graph that
has an Euler cycle and another that does not.

Definition 17.35. The Euler Cycle Problem is the following decision prob-
lem.

Input. A simple graph G.
Question. Does G have an Euler cycle?

How difficult is it to determine whether a graph contains an Euler cycle? It
is easy to see that the Euler Cycle Problem is in NP.

16



Evidence checker for Euler Cycle

Input Simple graph G with n vertices.

Evidence Sequence v1, . . . , vn of vertices of G.

Requirement v1 = vn, for i = 1, . . . , n− 1, {vi, vi+1} is an
edge of G (so v1, . . . , vn is a cycle) and cycle
v1, . . . , vn uses each edge exactly once.

So we have an upper bound on the difficulty of solving the Euler Cycle Prob-
lem: it is in NP, so it is, to within a polynomial, no worse than SAT. But
that is not a lower bound . It might be that the Euler Cycle Problem is easy
to solve.

And in fact, it is! Graph G has an Euler cycle if and only if every vertex has
even degree. That is easy to check. Not only is the Euler Cycle Problem in
P, but it is solvable in time O(n).

There is a lesson in that. You cannot inspect a problem and conclude, based
on its similarity to another problem, that it is an easy or a difficult problem.
To show that a problem is in P, find a polynomial-time algorithm for it, and
make sure that the algorithm works. To show that a problem is NP-complete,
show that it is in NP and that a known NP-complete problem reduces to it
in polynomial time. There are no shortcuts.

prev next

17


	Examples of NP-Complete Problems
	SAT
	Proving NP-Completeness
	3-SAT
	The Vertex Cover Problem
	The Independent Set Problem
	The Clique Problem
	The Subset Sum Problem
	Graph Coloring Problems
	Hamilton Cycles and Hamilton Paths
	Euler Cycles



