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6 Nonregular Languages

In this section we see how to prove that a language is not regular.

BIG IDEA: You can prove a negative.

6.1 A Motivating Example

Notation an means a string of n consecutive a’s. For example, a1 = "a", a2

= "aa" and a3 = "aaa". It is easy to design a finite-state machine that solves
language

L1 = {ambn | m > 0 and n > 0}.

A string s is in L1 if and only if s consists of some positive number of a’s
followed by a positive number of b’s. But suppose that

L2 = {anbn | n > 0}.

Notice that a string s is in L2 if and only if s consists of some positive number
of a’s followed by the same number of b’s. L2 = {"ab", "aabb", "aaabbb",
. . . }.

Suppose that you want to design a finite state machine M where L(M) = L2.
What information does M need to remember? What if M reads a string of
n a’s and the next symbol is a b? M must remember n. If it doesn’t, then
how will M be able to check whether there are exactly n b’s?

So it seems that M must have a state remembering that it has read exactly
1 a, another state remembering that it has read exactly 2 a’s, another re-
membering that it has read exactly 3 a’s, etc., without any limit. But that
requires infinitely many states!

Can we conclude that L2 is not regular? Be careful! Many incorrect “proofs”
have been proposed that follow the rough outline: “I can only see one way
to solve this problem. That way does not work. Therefore, this problem is
unsolvable.” That is nonsense. What if you missed an idea? We need a more
careful proof.
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6.2 A Proof Technique

The above idea about why L2 is not regular is sound, but it needs to be pre-
sented more carefully. This section illustrates a way to show that a language
is not regular (if it really isn’t regular), using language L2 as an example.

Theorem 6.1. L2 is not regular.

Proof.

1. The proof is by contradiction. Suppose that L2 is regular. We need to
derive a contradiction by proving that F is true.

Know: L2 is regular.

Goal: F.

2. Our knowlede uses term regular. By definition, L2 is regular if an only
if there is a DFA M where L(M) = L2.

Know: There exists a DFA M where L(M) = L2.

Goal: F.

3. When you know that there exists something with a particular property,
ask someone else to give you such a thing. So let’s ask for M , and
suppose the start state of M is q0.

Known variables: M , q0

Know: L(M) = L2.

Know: q0 is the start state of M .

Goal: F.

4. This kind of proof involves a clever idea, and here it is. Our intuitive
reasoning above looked at the state that M reaches after reading each
of a1, a2, a3, etc. So let’s think about those states. In fact, since we
have M in hand, we can do an experiment where we run M on each of
a1, a2, a3, a4, etc. For each one, let’s write the state that M reaches.
That gives a table that might start out looking like this.
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Input x State q0 : x reached

"a" 2

"aa" 6

"aaa" 3

"aaaa" 9

. . . . . .

But M only has finitely many states. By the pigeonhole principle, as
you expand the table for longer and longer strings of a’s, there must
come a point where a state is repeated. Suppose that strings ai and ak

take M to the same state q, where i < k.

Input x State q0 : x reached

. . . . . .

ai q

. . . . . .

ak q

. . . . . .

The experiment shows that q0 : a
i = q0 : a

k = q.

Known variables: M , q0, q, i, k

Know: L(M) = L2.

Know: q0 is the start state of M .

Know: q0 : a
i = q.

Know: q0 : a
k = q.

Know: i < k.

Goal: F.

5. Now comes a second clever trick. We have seen that M forgets the
difference between ai and ak, since the only thing M can remember
is the state that it is in. What if i b’s come next? On input aibi, M
should answer yes. But on input akbi, M should answer no.

3



Define q′ = q : bi. Recalling that q = q0 : a
i and q = q0 : a

k,

q′ = q : bi

= (q0 : a
i) : bi

= q0 : a
ibi (by Theorem 5.5)

q′ = q : bi

= (q0 : a
k) : bi

= q0 : a
kbi (by Theorem 5.5)

So M reaches the same state q′ on input aibi as on input akbi.

Suppose that q′ is an accepting state. Then M correctly accepts aibi

but incorrectly accepts akbi.

Suppose that q′ is a rejecting state. Then M correctly rejects akbi but
incorrectly rejects aibi.

No matter what, M does not correctly solve language L2.

Known variables: M

Know: L(M) = L2.

Know: L(M) 6= L2.

Goal: F.

6. That gives us the contradiction: (L(M) = L2)∧ (L(M) 6= L2) is equiv-
alent to F.

♦

The above proof is actually quite constructive. Suppose that Archibald says
he can produce a DFA M that solves L2. Ask Archibald to give you M .
Perform the above experiment. You find a string on which M gets the wrong
answer. Sending that string to Archibald provides him with an irrefutable
reason to believe that he was mistaken, and that M does not solve L2.
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6.3 Another Example

Suppose
L3 = {an | n is a perfect square}.

Theorem 6.2. L3 is not regular.

Proof.

1. The proof is by contradiction. Suppose that L3 is regular. We need to
derive a contradiction by proving that F is true.

Know: L3 is regular.

Goal: F.

2. By definition, L3 is regular if an only if there is a DFA M where L(M) =
L3.

Know: There exists a DFA M where L(M) = L3.

Goal: F.

3. Ask someone else to give you a DFA M where L(M) = L3. Suppose
the start state of M is q0.

Known variables: M , q0

Know: L(M) = L3.

Know: q0 is the start state of M .

Goal: F.

4. To employ the first clever idea, we need to find an infinite sequence of
strings to try M on. The requirement is that M cannot afford to forget
the difference between any two of those infinitely many strings; it needs
to stop in a different state for each of them. Finding that sequence is
the part of this kind of proof that requires the most thought.

A sequence of strings that does the job is a1, a4, a9, a16, etc.; that is,
run M on sequences of a’s of lengths 12, 22, 32, 42, etc. We have M in
hand, and we can do an experiment where we run M on each of those
strings. The table might start out looking like this.
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Input x State q0 : x reached

a1
2

8

a2
2

1

a3
2

14

a4
2

6

. . . . . .

Since M only has finitely many states, but there are infinitely many
strings in the sequence, the right-hand column must eventually contain
a repetition. Suppose that inputs ai

2
and ak

2
stop on the same state,

q.

Input x State q0 : x reached

. . . . . .

ai
2

q

. . . . . .

ak
2

q

. . . . . .

Known variables: M , q0, q, i, k

Know: L(M) = L2.

Know: q0 is the start state of M .

Know: q0 : a
i2 = q.

Know: q0 : a
k2 = q.

Know: i < k.

Goal: F.

5. For the second clever trick, we must show that the first clever trick was
chosen correctly. We have seen that M forgets the difference between
ai

2
and ak

2
, since the only thing M can remember is the state that it

is in. Our goal is to find one string r where M should accept ai
2
r but
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M should reject ak
2
r. A string r that does the job is r = a2i+1. Notice

that

ai
2

r = ai
2

a2i+1

= ai
2+2i+1

= a(i+1)2

So ai
2
r ∈ L3. But

ak
2

r = ak
2

a2i+1

= ak
2+2i+1

But i < k, so

k2 < k2 + 2i + 1

< k2 + 2k + 1

= (k + 1)2

Since there are no perfect squares between k2 and (k + 1)2, k2 + 2i+ 1
cannot be a perfect square. That means ak

2
r 6∈ L3.

Recall that M stops in the same state, q, on input ai
2

as on input ak
2
.

Therefore, it stops on the same state q′ = q : r on input ai
2
r as on input

ak
2
r.

If q′ is an accepting state, then M correctly accepts ai
2
r but incorrectly

accepts ak
2
r.

If q′ is an rejecting state, then M correctly rejects ak
2
r but incorrectly

rejects ai
2
r.

No matter what, there is an input on which M gives the wrong answer.
So L(M) 6= L3.

Known variables: M

Know: L(M) = L3.

Know: L(M) 6= L3.

Goal: F.
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6. That gives us the contradiction: (L(M) = L3)∧ (L(M) 6= L3) is equiv-
alent to F.

♦

6.4 Yet Another Example

Suppose
L4 = {ww | w ∈ {a, b}∗}.

Strings in L4 include "aa", "abab", "aabbbaabbb" and "bbaabbaa", among
infinitely many others.

Theorem 6.3. L4 is not regular.

Proof.

1. As before, the proof is by contradiction. Suppose that L4 is regular.
We need to derive a contradiction by proving that F is true.

Know: L4 is regular.

Goal: F.

2. By definition, L4 is regular if an only if there is a DFA M where L(M) =
L4.

Know: There exists a DFA M where L(M) = L4.

Goal: F.

3. Ask someone else to provide us with a DFA M where L(M) = L4.
Suppose the start state of M is q0.

Known variables: M , q0

Know: L(M) = L4.

Know: q0 is the start state of M .

Goal: F.
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4. We need to find an infinite sequence of strings to try M on, where M
cannot afford to forget the difference between any two of those strings.
A sequence that works is a1b, a2b, a3b, etc. Let’s try running M on
those strings and write down the state that M reaches for each of them.
The experiment might yield the following.

Input x State q0 : x reached

"ab" 1

"aab" 2

"aaab" 3

"aaaab" 4

. . . . . .

But M only has finitely many states. As you expand the table for
longer and longer strings, there must come a point where a state is
repeated. Suppose that strings aib and akb take M to the same state
q.

Input x State q0 : x reached

. . . . . .

aib q

. . . . . .

akb q

. . . . . .

The experiment shows that q0 : a
ib = q0 : a

kb = q.

Known variables: M , q0, q, i, k

Know: L(M) = L4.

Know: q0 is the start state of M .

Know: q0 : a
ib = q.

Know: q0 : a
kb = q.

Know: i < k.

Goal: F.
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5. M forgets the difference between aib and akb, since the only thing M
can remember is the state that it is in. What if string r = aib comes
next? On input aibaib, M should answer yes, since aibaib = ww where
w = aib. But on input akbaib, M should answer no, since there does
not exist any string w where akbaib = ww. But M reaches the same
state q′ = q : r on input aibaib as on input akbaib. If q′ is an accepting
state, then M incorrectly accepts akbaib. If q′ is a rejecting state, then
M incorrectly rejects aibaib. So M does not solve L4.

Known variables: M

Know: L(M) = L4.

Know: L(M) 6= L4.

Goal: F.

6. That gives us the contradiction.

♦
I have done these proofs in with a lot of detail. Here is the the previous proof
done in a more typical way.

Theorem 6.4. L4 is not regular.

Proof. Suppose L4 is regular. Let M by a DFA that solves L4.

Imagine doing an experiment where you run M on strings a1b, a2b, a3b, and
so on. Because M has finitely many states, eventually values i and k must
be found, with i < k, where aib and akb take M to the same state q.

Now imagine running M on inputs aibr and akbr where r = aib. Since M
reaches the same state on inputs aib and akb, M must also reach the same
state on inputs aibr and akbr. So M accepts both aibr and akbr or it rejects
both. But that means that M does not solve L4, since aibaib ∈ L and
akbaib 6∈ L. That is a contradiction.

♦

6.5 A Common Mistake

Suppose L5 = {anan | n > 0}. Let’s try to prove the following.
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Claim. L5 is not regular.

“Proof.”

1. The proof is by contradiction. Suppose that L5 is regular. We need to
derive a contradiction by proving that F is true.

Know: L5 is regular.

Goal: F.

2. By definition, L5 is regular if and only if there is a DFA M where
L(M) = L5.

Know: There exists a DFA M where L(M) = L5.

Goal: F.

3. Ask someone else to give such you a DFA M where L(M) = L5, and
suppose the start state of M is q0.

Known variables: M , q0

Know: L(M) = L5.

Know: q0 is the start state of M .

Goal: F.

4. Do an experiment using M . Run M on strings a1, a2, a3, etc. and
record the state reached for each string. Continue until a state q has
been written twice, which must happen because M has finitely many
states.

Input x State q0 : x reached

. . . . . .

ai q

. . . . . .

ak q

. . . . . .
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Known variables: M , q0, q, i, k

Know: L(M) = L2

Know: q0 is the start state of M

Know: q0 : a
i = q

Know: q0 : a
k = q

Know: i < k

Goal: F

5. Now we need to find a string r so that air ∈ L5 but akr 6∈ L5. Choose
r = ai.

Notice that air = aiai and that is in L5 from the definition of L5.

Notice that akr = akai. But that does not have the form anan so
akr 6∈ L5.

As before, that leads to a contradiction.

♦
But that “proof” cannot be correct. {anan | n > 0} = {a2n | n > 0}. So
L5 is the set of all strings of a’s whose length is even, and that is a regular
language. Where did the proof go wrong?

The incorrect proof states that akai does not have the form anan. Suppose
k = 4 and i = 2. Then akai = a4a2 = a6 = a3a3. In fact, as long as i + k is
even, akai does have the form anan, where n = (i + k)/2.

Can you insist that i + k is odd? Clearly not. The claim is false. It is
pointless to try to modify the proof since the claim is false.

6.6 Be Careful Not to Be Sloppy

Having seen a few proofs like the above, all using similar ideas, it is easy
to get the idea that it is not necessary to write out all of the details, and
instead to skip directly to step 5. But step 4 says what the experiment is;
that is, what is the infinite sequence of strings to run M on? If you don’t say
what the experiment is, you will find yourself making inconsistent statements
about that experiment.
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There is an easy way to avoid that. Don’t skip the details. Write them down
and check that what you have written is sensible. Look at an example. (We
found that the above incorrect proof was not right by looking at the example
i = 2 and k = 4.)

You don’t need to write out tables of known things and goals, as in our very
detailed proofs. Use the typical (shorter) proof style. But don’t expect a
person who reads your proof to fill in important details, such as the nature
of the experiment, or why one string is in L(M) while the other is not.
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