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13 Partially Computable Sets and m-Complete

Problems

13.1 Partially Computable Sets

For a program p, we have defined

L(p) = {x | p(x) ∼= 1}

We also added a stipulation that p can only be said to decide L(p) if p halts
on all inputs. What if we remove the stipulation? Does the definition of L(p)
make any sense then?

Let’s say that a language X is partially computable if there exists a program
p so that X = L(p), without the stipulation that p must halt on all inputs.
Is there a difference between the notion of a computable language and a
partially computable language?

It is easy to see that the class of partially computable languages is not the
same as the class of computable language. We know that HLT is not com-
putable.

Theorem 13.1. HLT is partially computable.

Proof. Here is a program halt(x) where L(halt) = HLT.

"{halt(p, x):
Run p(x)
return 1

}"

You can check that HLT is, indeed, the set of all ordered pairs (p, x) where
halt(p, x) ∼= 1. What is going on here?

The trick lies in the fact that halts(p, x) answers “no” by looping forever.
That is unpleasant because you can’t tell the difference between a program
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that is looping forever and a program that is just taking a very long time to
stop.

Notice that every computable language is also partially computable. That is
easy. The requirement

L(p) = {x | p(x) ∼= 1}

is the same as the requirement for a language to be computable. We have
just omitted the extra requirement that p must stop on every input.

13.2 M-Complete Problems

BIG IDEA: We can identify hardest problems in particular classes.

What is the point of defining partially computable languages? Well, for
one thing, they give us a third level of difficulty. A language can be com-
putable; partially computable (but not computable); and not even partially
computable. For example, ALL is known not to be partially computable.

For our purposes, the class of partially computable languages gives us an
opportunity to identify languages are the most difficult partially computable
problems.

Suppose that you want to show that person t is a tallest person in the room.
(It is possible for two people to be equally tall, so there might be more than
one tallest person). First, you would obviously need for person t to be in the
room. Next, you would need to compare person t’s height with the height
of every other person in the room and find that t is at least as tall as every
person in the room.

We can use an analogous idea to identify most difficult partially computable
problems.

Definition 13.2. Say that language T is m-complete if both of the following
are true.

1. T is partially computable.

2. X ≤m T for every partially computable language X.
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If you think of relation ≤m as meaning “no more difficult than,”, then you can
see that an m-complete language is one of the hardest partially computable
languages.

Do m-complete languages exist? Yes, and HLT is one of them.

Theorem 13.3. HLT is m-complete.

Proof. We have seen that HLT is partially computable, so condition (1) is
met. Now we must show that X ≤m HLT for every partially computable
language X.

Suppose that X is partially computable. Select a program r that partially
computes X. We can modify r so that it never answers “no” by making it
go into an infinite loop instead of answering no. Then we find that

X = {x | r(x)↓}

since, for the modified program r, halting is equivalent to answering “yes.”

Keep in mind the goal here: show that X ≤m HLT. An m-reduction from X
to HLT is

f(x) = (r, x).

It is easy to check that f(x) has both of the properties needed of an m-
reduction from X to HLT. Clearly, f is computable, since it just writes the
fixed program r along with x. Also, for every x,

x ∈ X ↔ f(x) ∈ HLT.

♦
It should not be surprising that HLT is one of the most difficult partially
computable languages. If you could solve HLT then you could solve every
partially computable language; just use your solution to HLT to tell whether
or not a program is looping forever, making ⊥ just as good an answer as ’no’.

A most difficult partially computable language ought not to be computable.
Take HLT as an example.

Theorem 13.4. If L is m-complete then L is uncomputable.

Proof. HLT is partially computable. By the definition of an m-complete
language, HLT ≤m L. By Corollary 11.15, L is not computable. (Intuitively:
L is at least as hard as uncomputable problem HLT.)
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♦
Later, we will see another context where we want to find problems that are
among the most difficult problems in a particular class.

13.3 Co-Partially Computable Sets

There is an asymmetry in the definition of partially computable sets. A
language L is partially computable if it is solvable by a program that stops
on inputs that are in L and loops forever on inputs that are not in L. What
if we define an analogous class of problems that are solvable by programs
that stop when the answer is no and loop forever when the answer is yes?

Definition 13.5. Language L is co-partially computable if there exists a
program p so that stops when x is not in L and that loops forever when x is
in L.

Is that the same class as the partially computable languages? No, because
of the asymmetry! Look at HLT. You already know that there is a program
p that stops on an input that is in HLT and loops forever on inputs that are
not in HLT. The same program p halts when x 6∈ HLT, and shows that HLT
is co-partially computable.

The following theorem is enough to show that the partially computable lan-
guages cannot be the same as the co-partially computable language.

Theorem 13.6. For every language L, L is computable if and only if L is
both partially computable and co-partially computable.

Proof. First, suppose that L is both partially computable and co-partially
computable. Get a program p that stops on inputs that are in L and another
program q that stops on inputs that are not in L. To decide whether x ∈ L,
run p(x) and q(x) concurrently. Eventually, one of them must stop. If the
program that stops is p, say that x is in L. If the program that stops is q,
say that x is not in L.

Next, suppose that L is computable. It is easy to show that L is both partially
computable and co-partially computable. For the former result, just take a
program that decides p and make it loop forever when it is about to stop
and answer ’no’. For the latter result, make p loop forever when it is about
to answer ’yes’.
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♦
Later, we will see another class that shares the asymmetry in its definition
as the class of partially computable sets and has a notion of most difficult
problems. Whether or not an analog of Theorem 13.6 holds is critical to
whether there exist public-key cryptosystems.
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