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3 Theorems and Proofs

A theorem is any mathematical statement, such as a formula of first-order
logic, that has been proved true or is about to be proved true. (When you
are about to prove a theorem, you call it theorem as a way of promising that
a proof is about to be produced.)

BIG IDEA: Doing proofs teaches you to reason carefully and to present
your ideas precisely. Writing computer software requires you to reason
carefully and to present your ideas (in the form of a computer program)
precisely. People who can do proofs are prepared for the rigors of software
development.

3.1 What Is a Proof?

There are many different precise definitions of a proof. But most mathe-
maticians accept an informal definition: a proof is a clear and unambiguous
argument that a mathematical statement is true and that any sufficiently
knowledgeable person can check. The key is that a reader must be able to
check that each step in the proof is correct.

Students who are just learning to do proofs make many different kinds of
mistakes, but most fall into one of the following two categories.

1. The student does not check his or her own work. The reason
for this can vary from lack of time to lack of understanding to fear of
failure.

Errors in elementary algebraic manipulations are surprisingly common.
Simply looking at your work with a critical eye will usually suffice to
find those errors.

When you do a proof, it is a good idea to look at proofs of similar
statements that you have already seen, and to modify those proofs to
work for your current goal. But be cautious! It is easy to end up with
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something that makes no sense. Check the modified proof carefully
with a critical eye.

The student who has a lack of understanding cannot check the proof.
The only remedy is to gain the necessary understanding.

The student who is afraid of failure will not check the proof out of fear
that it might turn out to be incorrect. That can be cured by adopting
a policy of checking everything that you write and fixing it when you
encounter an error. Take pride in your work and care whether it is
right.

Regardless of your reason for not checking your proof, you can be sure
that an unchecked proof is incorrect, for the same reasons that an
untested computer program does not work. You will need to find a
way to motivate yourself to check your proofs carefully.

2. Mathematics relies on precise definitions. When you do a proof, it is
essential for you to use definitions wherever appropriate. Students
often get stuck in a proof because they have forgotten to use
definitions. Any time you cannot see how to proceed, ask yourself if
using a definition will help. We will see examples of that.

3.2 Deus ex Machina

Deus ex machina is latin for “god from the machine.” In ancient plays,
there were certain rules that the playwright was required to follow. (Modern
movies have similar constraints. You are not allowed to kill off the hero, for
example, especially when the hero is played by a popular actor.) Sometimes
the playwright got his characters in a real bind, and he could not see how to
get them out of it. The solution was to have a platform rise up with an actor
on it dressed as a god. The actor would wave his arms and fix everything.

I have frequently found that students resort to deus ex machina in their
proofs. Having written part of a proof, the student finds that he or she
cannot make further progress. So he or she simply writes the goal and claims
that it has been proved. Voila!

I can only guess that a student does that in the hope of getting partial credit
for the part of the “proof” before pulling the goal out of the air. But pulling
the goal out of the air will decrease your score. It is better to admit that you
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are stuck. Even better, back up and try a different approach, or check your
algebra; with correct algebra, you might not actually be in a bind at all.

3.3 Forward Proofs

A forward proof reasons from what you know to what you can conclude. The
proof accumulates knowledge and (named) values until it reaches a point
where the goal is known. Each new conclusion can rely on prior knowledge
or conclusions.

You have probably been taught a different approach in an algebra class. In a
backwards proof , you write down what you want to show and then perform
some manipulations on it, working backwards to a statement that you already
know is true, such as x = x.

In this class, we will do forward proofs, with small excursions that typically
convert a goal into an equivalent goal, followed by a proof of the equivalent
goal. I expect you to use forward proofs as well. At least for this class,
put aside the backwards proofs that you have learned in algebra.

In this section, I do proofs at two different levels of detail. The first proof
of a theorem works in small steps and shows everything that you know after
each step. The second proof of the same theorem is more typical of what you
would write, and what I want to see from you.

3.4 Some Definitions

Definition 3.1. Integer n is even if there exists an integer m such that
n = 2m. For example, 6 is even because 6 = (2)(3).

Definition 3.2. Integer n is odd if there exists an integer m such that
n = 2m + 1. We will also make use of the fact that, for every n, n is odd if
and only if n is not even.

Definition 3.3. Integer n is a perfect square if there exists an integer m
such that n = m2.

Definition 3.4. Real number x is rational if there exist integers n and m
where m 6= 0 such that x = n/m.
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3.5 Proving A Implies B

You typically prove an implication by direct proof : To prove A → B,
assume that A is true and show that B is true. That is, add A to your
knowledge. Then prove B.

Example Theorem 3.5. If n is even then n2 is even.

Detailed Proof.

1. Suppose that n is even.

Known variables: n

Know: n is even.

Goal: n2 is even.

2. By the definition of an even integer, there exists an integer m such that
n = 2m.

Known variables: n, m

Know: n is even.

Know: n = 2m.

Goal: n2 is even.

3. Since n = 2m, n2 = (2m)2 = 4m2 = 2(2m2).

Known variables: n, m

Know: n is even.

Know: n = 2m.

Know: n2 = 2(2m2).

Goal: n2 is even.

4. So n2 = 2(x) where x = 2m2. Using the definition of an even number
again, n2 is even.

♦
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Typical Proof. Suppose n is even. By the definition of an even integer,
there is an integer m such that n = 2m. So

n2 = (2m)2 = 4m2 = 2(2m2).

By the definition of an even integer, n2 is even.

♦

Example Theorem 3.6. If n and m are perfect squares then nm is a perfect
square.

Detailed Proof.

1. Suppose that n and m are perfect squares.

Known variables: n, m

Know: n is a perfect square.

Know: m is a perfect square.

Goal: nm is a perfect square.

2. By the definition of a perfect square, there exist integers x and y such
that n = x2 and m = y2.

Known variables: n, m, x, y

Know: n = x2.

Know: m = y2.

Goal: nm is a perfect square.

3. Replacing n by x2 and m by y2, nm = x2y2 = (xy)2.

Known variables: n, m, x, y

Know: n = x2.

Know: m = y2.

Know: nm = (xy)2.

Goal: nm is a perfect square.

4. So nm = z2 where z = xy. Using the definition of a perfect square
again, nm is perfect square.
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♦

Typical Proof. Suppose that n and m are perfect squares. By the definition
of a perfect square, there exist integers x and y such that n = x2 and m = y2.
Replacing n by x2 and m by y2,

nm = x2y2 = (xy)2.

So nm is a perfect square.

♦

3.5.1 Using the Contrapositive

You can prove any theorem by proving an equivalent mathematical state-
ment. For example, you can prove A → B by proving equivalent formula
¬B → ¬A, which is called the contrapositive of A→ B. Here is an example.

Example Theorem 3.7. Suppose n is an integer. If 3n + 2 is odd, then n
is odd.

Detailed Proof. We prove the contrapositive: If n is not odd then 3n + 2
is not odd.

1. We know that an integer x is even if and only if x is not odd. So what
we want to prove is equivalent to: If n is even then 3n + 2 is even.

Known variables: n

Goal: If n is even then 3n + 2 is even.

2. Suppose that n is even.

Known variables: n

Know: n is even.

Goal: 3n + 2 is even.
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3. By the definition of an even integer, there exists an integer m such that
n = 2m.

Known variables: n, m

Know: n = 2m.

Goal: 3n + 2 is even.

4. 3n + 2 = 3(2m) + 2 = 6m + 2 = 2(3m + 1).

Known variables: n, m

Know: n = 2m.

Know: 3n + 2 = 2(3m + 1).

Goal: 3n + 2 is even.

5. Using the definition of an even integer again, 3n + 2 is even because
3n + 2 = 2z where z = 3m + 1.

♦

Typical Proof. We prove the contrapositive: If n even then 3n + 2 is even.

Suppose n is even. Then there exists an integer m such that n = 2m.

3n + 2 = 3(2m) + 2 = 6m + 2 = 2(3m + 1).

Since 3n + 2 is twice an integer, 3n + 2 is even.

♦

3.6 Proving and Using (A and B)

To prove A ∧B, prove A and prove B.

If you know that A ∧B is true, then you know that A is true and you know
that B is true.
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3.7 Proving and Using not(A)

To prove ¬(A), you typically use DeMorgan’s laws and the laws for negating
quantified formulas to push the negation inward. For example, to prove
¬(A ∧ B), you prove equivalent formula ¬A ∨ ¬B. To prove ¬(∀xA), you
prove equivalent formula ∃x(¬A).

The same principle applies when you already know ¬(A). For example, if
you know ¬(A → B), you can conclude equivalent formula A ∧ ¬B. You
write that down as an additional known fact.

3.8 Proving and Using (A or B)

To prove A ∨ B, you usually prove one of the equivalent formulas ¬A → B
or ¬B → A.

Suppose that you know that A∨B is true and you want to use that to show
that C is true. That is, you want to show that A ∨ B → C is true. You
typically prove equivalent formula

A→ C ∧ B → C.

That is called proof by cases. First, you assume that A is true and show that
C is true. Next, you assume that B is true and show that C is true. See
Section 3.13.

Proof by cases requires you to do each case in a silo. Assumptions made
while proving A→ C cannot be used when proving B → C. When you start
to prove B → C, your knowledge reverts to what it was when you were just
about to start to prove A→ C.

3.9 Proving and Using Existential Statements

To prove that something exists, produce it. That is called a constructive
existence proof.

Example Theorem 3.8. There exists an integer n where n is even and n
is prime.

Proof. Choose n = 2. Notice that n is even and n is prime.

♦
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3.9.1 Using Existential Knowledge

Sometimes, instead of needing to prove ∃xP (x), you already know ∃xP (x).
What do you do? You ask somebody else to give you a value x so that P (x)
is true. It is not necessary for you to say how to find x. We will encounter
many examples of that.

3.10 Proving Universal Statements

To prove ∀xP (x), prove P (x) for an arbitrary value of x.

That does not mean that you can choose the value of x. Rather, someone else
chooses x and you must prove that P (x) is true for that value of x. Think of
it as a challenge. You say to someone else, give me any value of x that you
like. I will prove that P (x) is true. In mathematics, arbitrary always means
a value chosen by someone else.

We have actually used this idea above. When the statement of a theorem
involves unbound (unquantified) variables, it is assumed to be saying that
the statement is true for all values of those variables. Here is the first proof
above with the quantifier explicit. The universe of discourse is the set of all
integers.

Example Theorem 3.9. ∀n(n is even → n2 is even).

Detailed Proof.

1. Ask someone else to select an arbitrary integer n. (We cannot assume
anything about n except that it belongs to the universe of discourse.)
We must prove: (n is even → n2 is even) for that n.

Known variables: n

Goal: n is even → n2 is even.

2. Suppose that n is even.

Known variables: n

Know: n is even.

Goal: n2 is even.
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3. By the definition of an even integer, there exists an integer m such that
n = 2m.

Known variables: n

Know: ∃m(n = 2m).

Goal: n2 is even.

4. Ask someone else to provide the integer m that is asserted to exist.

Known variables: n, m

Know: n = 2m.

Goal: n2 is even.

5. Since n = 2m, n2 = (2m)2 = 4m2 = 2(2m2).

Known variables: n, m

Know: n = 2m.

Know: n2 = 2(2m2).

Goal: n2 is even.

6. So n = 2(x) where x = 2m2. Using the definition of an even number
again, n is even.

♦

Typical Proof. Let n be an arbitrary even integer. By the definition of an
even integer, there exists an integer m such that n = 2m. So

n2 = (2m)2 = 4m2 = 2(2m2).

Evidently, n2 is even.

♦

3.10.1 Proof by Contradiction

You can prove any theorem by proving an equivalent theorem. We have seen
propositional tautology

p ↔ (¬p→ F).

10



That is, to prove p, assume that p is false and prove that F is true. Typically,
you use the tautology

(q ∧ ¬q) ↔ F

to prove F by proving a statement and its negation. That is called proof by
contradiction. Let’s use proof by contradition to reprove a theorem that we
proved above.

Example Theorem 3.10. For every integer n, if 3n + 2 is odd, then n is
odd.

Detailed Proof.

1. Reasoning by contradiction, we can assume the theorem is false and
prove F. That is:

Know: ¬∀n(3n + 2 is odd → n is odd).

Goal: F.

2. We can push the negation across the quantifier using valid formula
¬∀xA ↔ ∃x(¬A)).

Know: ∃n(¬(3n + 2 is odd → n is odd)).

Goal: F.

3. Now use the tautology that ¬(p→ q) ↔ p ∧ ¬q).

Know: ∃n(3n + 2 is odd ∧ n is even).

Goal: F.

4. Ask somebody else to select an integer n such that 3n + 2 is odd and
n is even.

Known variables: n

Know: 3n + 2 is odd.

Know: n is even.

Goal: F.
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5. By the definition of an even integer, saying that n is even is equivalent
to saying that there exists an integer m such that n = 2m. (Existential
information is useful because it allows you to get something in hand,
as is done in the next step. So you often want to exploit existential
information.)

Known variables: n

Know: 3n + 2 is odd.

Know: ∃m(n = 2m).

Goal: F.

6. Since we know that an integer m exists such that n = 2m, we can ask
somebody else to give us such an m. Let’s do that.

Known variables: n, m

Know: 3n + 2 is odd.

Know: n = 2m.

Goal: F.

7. Since we know that n = 2m, it seems reasonable to substitute 2m for
n in expression 3n + 2 to see what we get. Doing that gives

3n + 2 = 3(2m) + 2 = 6m + 2 = 2(3m + 1).

So 3n + 2 is even. Recording that:

Known variables: n, m

Know: 3n + 2 is odd.

Know: n = 2m.

Know: 3n + 2 is even.

Goal: F.

8. But 3n + 2 cannot be both even and odd. Formula (3n + 2 is odd ∧
3n+ 2 is even) is equivalent to F. So we have concluded that F is true
and we are done.

♦
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Typical Proof. By contradiction. Assume there exists an n such that 3n+2
is odd but n even. Since n is even, there exists an integer m so that n = 2m.
So

3n + 2 = 3(2m) + 2 = 6m + 2 = 2(3m + 1).

That means 3n+ 2 is even, contradicting the assumption that 3n+ 2 is odd.

♦

3.11 Proving ∀x(∃y(A))

It is common to encounter theorems whose general form is ∀x(∃yP (x, y)).
The proof usually involves finding an algorithm. For any x, the algorithm
must find a y so that P (x, y) is true. Here is an example.

Example Theorem 3.11. For all real numbers x and y, if x and y are both
rational numbers then x + y is also a rational number.

Detailed Proof.

1. Ask someone else to select arbitrary real numbers of x and y.

Known variables: x, y

Goal: If x and y are rational then x + y is rational.

2. Assume that x and y are rational.

Known variables: x, y

Know: x is rational.

Know: y is rational.

Goal: x + y is rational.

3. Our knowledge involves the term rational. We need to know what
that means. From the definition of a rational number, there must exist
integers a and b where b 6= 0 and x = a/b; and there must exist integers
c and d where d 6= 0 and y = c/d. (Notice that different names are
chosen for different things.)
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Known variables: x, y, a, b, c, d

Know: a, b, c and d are integers.

Know: b 6= 0.

Know: d 6= 0.

Know: x = a/b.

Know: y = c/d.

Goal: x + y is rational.

4. Since the goal is to show that x + y is rational, let’s replace x by a/b
and replace y by c/d in expression x + y. Since b and d are nonzero,

x + y = a/b + c/d = ad/bd + bc/bd = (ad + bc)/bd.

Known variables: x, y, a, b, c, d

Know: a, b, c and d are integers.

Know: b 6= 0.

Know: d 6= 0.

Know: x = a/b.

Know: y = c/d.

Know: x + y = (ad + bc)/bd.

Goal: x + y is rational.

5. But we have shown that x + y is the ratio of integers ad + bc and bd.
Since neither b nor d is 0, bd cannot be 0. So x + y is rational, by the
definition of a rational number.

The algorithm that has been employed here is for adding two fractions.

♦

Typical Proof. Let x and y be arbitrary rational numbers. By the definition
of a rational number, there exists integers a, b, c and d (b 6= 0 and d 6= 0)
such that x = a/b and y = c/d. Then

x + y = a/b + c/d = ad/bd + bc/bd = (ad + bc)/bd.

Since x + y is the ratio of two integers, x + y is rational. (You can observe
that bd 6= 0 since the product of two nonzero numbers is nonzero.)
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3.12 Proving (A If and Only If B)

There are two commonly used ways of proving A↔B.

3.12.1 Using Direct Equivalences

You can treat ↔ in a way similar to the way you treat = in algebraic equa-
tions, performing equivalence-preserving manipulations. Let’s use that ap-
proach to prove the law of the contrapositive.

Example Theorem 3.12. p→ q ↔ ¬q → ¬p.

Proof.

¬q → ¬p ↔ ¬(¬q) ∨ ¬p (defn of →)

↔ q ∨ ¬p (double negation)

↔ ¬p ∨ q (commutative law of ∨)

↔ p→ q (defn of →)

3.12.2 Proving Two Implications

Sometimes it is preferable to use the fact that A↔B, is equivalent to (A→
B) ∧ (B → A) and to prove A→ B and B → A separately.

Example Theorem 3.13. For every integer n, n is odd if and only if n2 is
odd.

Detailed Proof.

1. It suffices to prove

∀n((n is odd → n2 is odd) ∧ (n2 is odd → n is odd)).

That gives two goals. We use tautology ∀x(A ∧ B) ↔ (∀xA ∧ ∀xB)
and change the variable names so that we can look at the two parts
separately without variables from one interfering with the other.

Goal (1): ∀n(n is odd → n2 is odd).

Goal (2): ∀m(m2 is odd → m is odd).
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2. Ask someone else to choose arbitrary values of m and n.

Known variables: n, m

Goal (1): n is odd → n2 is odd.

Goal (2): m2 is odd → m is odd.

3. Goal (2) is equivalent to its contrapositive, m is even → m2 is even.
We proved that as Theorem 3.1. That only leaves Goal (1). (We still
know goal (2), of course, but we can always discard known information
to simplify.)

Known variables: n

Goal (1): n is odd → n2 is odd.

4. To prove Goal (1), assume that n is odd.

Known variables: n

Know: n is odd.

Goal (1): n2 is odd.

5. Since n is odd, there exists an integer k so that n = 2k + 1.

Known variables: n

Know: ∃k(n = 2k + 1).

Goal (1): n2 is odd.

6. Ask someone else to provide a value k such that n = 2k + 1.

Known variables: n, k

Know: n = 2k + 1.

Goal (1): n2 is odd.

7. Since n = 2k + 1,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since n2 = 2z + 1 for z = 2k2 + 2k, it is evident that n2 is odd.
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♦

Typical Proof.

(a) (n is odd → n2 is odd) Assume that n is odd. By the definition of an
odd integer, there is an integer k such that n = 2k + 1. So

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

By the definition of an odd integer, n2 is odd.

(b) (n2 is odd → n is odd) This is equivalent to (n is even → n2 is even),
which we profed earlier as Theorem 3.1.

♦

3.13 Proof by Cases

Proof by cases involves proving two or more statements. You must be careful
that assumptions made during one of those cases are not still in place when
proving another one. Think of this is similar to calling a function in a pro-
gram. Each time a function is called, a new frame is created, so that calling
f(3) does not interfere with a later call to f(4).

Example Theorem 3.14. For every integer n, n2 ≥ n.

Detailed Proof.

1. Ask someone to select an arbitrary integer n.

Known variables: n

Know: n is an integer

Goal: n2 ≥ n.

2. Let’s break proving the goal into three cases: n = 0, n > 0 and n < 0.
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Known variables: n

Know: n is an integer

Goal (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

3. Goal (1) is clearly true since 02 ≥ 0. Let’s record it among the known
facts.

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

4. Goal (2) is an implication, so we should assume that n > 0 and prove
that n2 ≥ n. But let’s prove that as a separate subproof. Knowledge
and goals that are local to the proof of goal (2) are numbered 2.1, 2.2,
etc., and they can only be used to establish goal (2).

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

Know (2.1): n > 0

Goal (2.1): n2 ≥ n

5. Since n > 0 is an integer, it must be the case that n ≥ 1.
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Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

Know (2.1): n ≥ 1

Goal (2.1): n2 ≥ n

Multiplying both sides of fact (2.1) by n preserves the inequality be-
cause n > 0. That gives n · n ≥ n · 1, or equivalently, n2 ≥ n.

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

Know (2.1): n ≥ 1

Know (2.2): n2 ≥ n

Goal (2.1): n2 ≥ n

6. We have succeeded in proving goal (2). Notice that fact (2.2) cannot
be used to establish goal (4) since it depends on the assumption that
n > 0.

We can move goal (2) into our knowledge. But we must also throw out
parts that were local to the proof of goal (2).

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Know (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.
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7. Now we need to prove goal (3). Assume that n < 0. But the square
of any number is nonnegative. It follows that n2 ≥ 0 > n when n < 0,
and we can move goal (3) into what we know.

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Know (2): n > 0→ n2 ≥ n.

Know (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

8. Propositional formula

(p→ s) ∧ (q → s) ∧ (r → s) ∧ (p ∨ q ∨ r))→ s

is a tautology. That means known facts (1), (2) and (3) imply goal (4).

♦

Typical Proof. The proof is by cases (n = 0, n > 0 and n < 0).

Case 1 (n = 0). Then n2 ≥ n because 02 ≥ 0.

Case 2 (n > 0). The smallest positive integer is 1, so n > 0 implies n ≥ 1.
Multiplying both sides of inequality n ≥ 1 by positive number n gives n2 ≥ n.

Case 3 (n < 0). n2 ≥ 0 for all numbers n. Since, in this case, n is negative,
clearly n2 ≥ n.

♦
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