
prev next

7 Regular Expressions

This section introduces regular expressions. A regular expression describes
a set of strings. We will see that the class of languages that can be decribed
by regular expressions is the same as the class of regular languages (those
languages that can be solved by a finite-state machine).

Regular expressions are of practical value; some programming language li-
braries provide tools for doing searches based on regular expressions. Some
text editors and console command languages similarly provide tools for search-
ing for something that is a member of the set described by a given regular
expression.

7.1 Regular Operations

The regular operations are operations on languages; they take one or more
languages and yield another language, in the same sense that operator +
takes two numbers and yields another number. The first regular operation
is union (A ∪ B), which we have already seen. The remaining two regular
operations are concatenation and Kleene closure.

Definition 7.1. The concatenation A · B of languages A and B is defined
by

A ·B = {xy | x ∈ A and y ∈ B}.

That is, A ·B is the set of all strings that can be formed by writing a member
of A followed by a member of B. For example, {"aa", "ccb"} · {"abc", "bb"}
= {"aaabc", "aabb", "ccbabc", "ccbbb"}.

Definition 7.2. The Kleene closure A∗ of language A is defined by

A∗ = {x1x2 · · ·xn | n ≥ 0 and xi ∈ A for i = 1, . . . , n}.

1



If A = {"a", "bcb"} then A∗ = {ε, "a", "bcb", "aa", "abcb", "bcba", "bcbbcb",
. . . }. A∗ contains the empty string and all strings that can be formed by
concatenating members of A together. Notice that {}∗ = {ε}.
Language L is closed under concatenation if, whenever x and y are both in
L, xy is also in L. Another way to define the Kleene closure of A is as the
smallest set of strings that is closed under concatenation and that contains
ε all members of A.

7.2 Regular Expressions

A regular expression e over alphabet Σ is an expression whose value is a
language L(e) over Σ. Regular expressions have the following forms.

1. Symbol ∅ is a regular expression. L(∅) = {}.

2. A symbol a ∈ Σ is a regular expression. L(a) = {"a"}.

3. If A and B are regular expressions, then:

(a) A ∪B is a regular expression. L(A ∪B) = L(A) ∪ L(B).

(b) AB is a regular expression. L(AB) = L(A) · L(B).

(c) A∗ is a regular expression. L(A∗) = L(A)∗.

Conventionally, * has highest precedence, followed by concatenation, with ∪
having lowest precedence. You can use parentheses to override precedence
rules.

We put spaces in some regular expressions to make them more readable.
They don’t affect the meaning.

2



7.3 Examples of Regular Expressions

(ab)∗ Any string over alphabet {a, b} that consists of ab
repeated zero or more times. {ε, "ab", "abab",
"ababab", . . . }

a∗b∗ Any string over alphabet {a, b} that consists of
zero or more a’s followed by zero or more b’s: {ε,
"a", "b", "ab", "aab", "aabb", . . . }.

(a ∪ b)∗ All strings over alphabet {a, b}.

(a ∪ b)∗a(a ∪ b) All strings over alphabet {a, b} whose next-to-last
symbol is a.

(a ∪ b)∗aabb(a ∪ b)∗ All strings over alphabet {a, b} that have aabb as
a contiguous substring.

b∗(ab∗a)∗b∗ All strings over alphabet {a, b} that have an even
number of as.

(0 ∪ 1(01∗0)∗1)∗ All binary numbers that are divisible by 3. (This
one is difficult and is not obvious. Look at the DFA
in Figure 5.1.1. Starting in state 0, what can the
DFA read to get it back to state 0? Certainly, it
can read a 0. It can also read a 1, taking it to state
1, then 01∗0 repeated any number of times, then a
1 to get it back to state 0. Those two, getting the
DFA from state 0 back to state 0, can be repeated
any number of times.

prev next

3


	Regular Expressions
	Regular Operations
	Regular Expressions
	Examples of Regular Expressions


