Computer Science 2530
Spring 2020
Practice Exam 4 Answers

Answers to the multiple choice questions are in bold.
The first two questions use the following structure type definition.

struct Feline
{
int size;
const char* coat;
Feline(int s, const char* c)
{
size = s;
coat C;

¥

};

1. [MC] Suppose that you have already created a variable called cat
of type Feline. Which of the following statements will set the
'size’ field of cat to hold 107

(a) s.Feline = 10;

(b) cat.s = 10;

(c) cat.size = 10;

(d) Feline.size = 10;

(e) size.cat = 10;

2. [MC] Which of the following statements or sequences of state-
ments will create a variable p of type Feline® and make p point to
a new Feline structure whose ’size’ field holds 8 and whose ’coat’
field holds “tabby”?

(a) new Feline® p(8, "tabby”);
(b) Feline* p = new Feline*; p-;jsize = 8; p-jcoat = "tabby”;
(c) Feline* p = new Feline(8, ”tabby”);
(d) Feline* p(8, "tabby”);
)

(e) Feline* p = new Feline*; size.p = 8; coat.p = "tabby”;



Types ListCell and List are as defined in class. Here are their defini-
tions.

struct ListCell
{

int head;
ListCell* tail;

ListCell(int h, ListCellx* t)
{
head = h;
tail t;
}
};
typedef ListCell* List;

You can assume that constant emptylList and functions isEmpty(L),
head(L), tail(L) and cons(z, L) have been defined as in class.

3. [MC] Which of the following will create variable L, of type List,
and make it point to a new linked list holding 4 and 7, in that
order? (Using our conceptual list notation, it must make L refer
to list [4, 7].)

(a) List L = new ListCell(4, new ListCell(7, NULL));
(b) List L = new ListCell(7, new ListCell(4, NULL));

(c) List L = new List(4, new List(7, NULL));

(d) List L = new ListCell(4, 7);

(e) List L = new ListCell(7, 5);

4. Suppose that variables L and n have already been created. L has
type ListCell* and points to a linked list of length three, and n

has type int. Which of the following sets variable n to the second
integer in list L?

(a) n = L->head->tail
(b) n = L->tail->tail;

(c) n = L->tail->head;
(d) n = L->2;

(e) n = L[1};



5. Suppose that sum(L) is intended to return the sum of the values
in list L. For example, sum([8, 2, 5]) = 8 + 2 + 5 = 15 and
sum([9, 7]) = 9 + 7 = 16. The sum of an empty list is 0.

(a) Using the conceptual notation for lists discussed in
class, complete the following equations so that, taken to-
gether, they define sum(L) for every list L. Use conceptual
notation, not C++ notation, for this part. See the bottome
of the last page for a brief summary of conceptual list nota-

tion.

sum([])

sum(L)

head(L) + sum(tail(L))
(when L # [])

Following your equations from part (a) closely, write a C++
definition of sum(L). It must not change any of the cells in
list L. Do not use any kind of loop for this definition.

A heading is given.

Using the C++ version of conceptual notation:

int sum(List L)
{

if (isEmpty (L))

{

return O;

3

else

{

return head(L) + sum(tail(L));

b
b

Using native C++ notation:

int sum(List L)
{
if (L == NULL)
{

return O;

3

else

{



return L->head + sum(L->tail);
}
}



6. Suppose that function negatives(L) is intended to be a nonde-
structive function that returns a list obtained from list L by re-
placing each value x by —z. For example,

—9)) = [-3,0,9],
3, 07 9) = 13,0, -9},
) = [-4],
4]) = [4],

e negatives([]) = [].

e negatives
e negatives

(I3,
([~
e negatives([4]
e negatives([—
(I

(a) Using the conceptual notation for lists discussed in
class, complete the following equations so that, taken to-
gether, they define negatives(L) for every list L. Use the
examples above to help you work these out. Do not guess.
Do not use C++ notation.

negatives([]) = []

negatives(L) = —head(L) : negatives(tail(L))
(when L 1)

(b) Demonstrate that your equations are correct by using them
to compute, in order,

1. negatives([]) = []

-head([5]) : negatives(tail([5]))
-5 : negatives([])

-5 []

= [-5]

2. negatives([5])



3. negatives([3,5]) = -head([3,5]) : negatives(tail([3,5]))
-3 : negatives([5])

-3 : [-5]

= [-3,-5]

Do not just write the answers without using your equations.
If you discover that your equations are not correct then fix
them and recompute each of the above.



(c) Following your equations from part (a) closely, write a C++
definition of negatives(L). It must not change any of
the cells in list L. Do not use any kind of loop for
this definition. A heading is given.

Using the C++ version of conceptual notation:

List negatives(List L)
{

if (isEmpty (L))

{

return emptyList;

3

else

{
return cons(-head(L), negatives(tail(L)));

b
}

Using native C++ notation:

List negatives(List L)

{
if (L == NULL)
{
return NULL;
}
else
{
return new ListCell(-(L->head), negatives(L->tail));
}
}

Summary of conceptual list notation.

[] is an empty list

isEmpty([]) is true
head([2, 4, 6, 8]) =2
tail([2, 4, 6, 8]) = [4, 6, §]

2:[4, 6,8 | =12, 4, 6, §]



