
Computer Science 2530

April 2, 2020

Happy Thursday, April 2.

Analysis of algorithms is concerned with determining how much time
(or memory) an algorithm uses, as a function of the size of the input.

We will be spending just a little time looking at analysis of algorithms.
The ideas are simple. The key is to pay attention to definitions and
facts. Read the material and learn the facts.

Functions

You should be familiar polynomials, such as n2+5n. For our purposes,
the only characteristic of a polynomial that matters is the degree of the
polynomial. n2 + 5n is a quadratic polynomial (degree 2).

An important function is log
2
(n), the logarithm to base 2 of n. The

logarithm grows very slowly as n grows. You can get an estimate of
log

2
(n) by starting with n and doing a sequence of halvings, stopping

at 1, rounding down to the nearest integer at each step. Suppose that
n = 10.

10
5
2
1

There are 4 numbers, but only three steps of halving and rounding
down to the nearest integer. That tells you that log

2
(10) ≈ 3, because

it took 3 steps of halving. In fact, the estimate is off by no more than
1; 3 ≤ log2(10) ≤ 4. Let’s do the same thing starting at 35.

35
17
8
4
2
1

It takes 5 steps of halving to reach 1. So 5 ≤ log
2
(35) ≤ 6.

1

Exercises

Read page 35A in the notes. Do the exercises at the bottom of page
35A.

Big-O notation

We would like to get a rough estimate of how large a function is. Sup-
pose that f(n) and g(n) are two functions of n.

We say that f(n) is O(g(n)) (f(n) is “big Oh” of g(n)) provided there
is a constant c so that f(n) ≤ cg(n).

That definition is not complicated. Here are some examples.

Example. n2 is O(3n2 + 1). Choose c = 1.

Example. 3n2 + 1 is O(n2). Choose c = 4. Notice that

3n2 + 1 ≤ 3n2 + n2

= 4n2

All you need to remember about polynomials is this.

1. Suppose that f(n) and g(n) are both polynomials of degree d.
Then f(n) is O(g(n)).

2. Suppose that f(n) is a polynomial of degree df and g(n) is a
polynomial of degree dg. Then f(n) is O(g(n)) exactly when
df ≤ dg.

Example. n4 is O(5n5) because n4 has degree 4, 5n5 has degree 5 and
4 ≤ 5.

Example. n5 is not O(n4) because 5n5 has degree 5, n4 has degree 4,
and 5 6≤ 4.

Big-Theta notation

There is another notation that is more precise than big-O notation. Θ
is an upper case Greek letter theta.

Suppose that f(n) and g(n) are two functions of n. We say that f(n)
is Θ(g(n)) (f(n) is big-Theta of g(n)) provided

2

1. f(n) is O(g(n)).

2. g(n) is O(f(n)).

For polynomials, all you need to know is: Suppose f(n) is a polynomial
of degree df and g(n) is a polynomial of degree dg. Then f(n) is Θ(g(n))
exactly when df = dg.

For example:

Example. 3n3 is Θ(20n3 + n2).

Example. 10n2 + 2 is Θ(n2).

Example. n2 is not Θ(n3).

Example. n3 is not Θ(n2).

Big-O and big-Theta notation and algorithms

When we want to know how efficient an algorithm is, we ideally find
a function f(n) so that the algorithm takes time that is Θ(f(n)) on
inputs of size n.

Example. Suppose that s is a null-terminated string of length n.
Function strlen(s) takes time that is Θ(n) to find the length of s. Why?
Because it looks at each character in s once.

Example. Suppose that L is a linked list whose length is n. It takes
time that is Θ(n) to find the length of L.

Example. Suppose that s is a null-terminated string of length n. How
much time does it take to compute strlen(s) n times? If you buy 20
things and they cost $5 each, then you pay $100. You multiply. If you
do n steps and each step takes time about n, then the total time is
about n2. You multiply. So it takes time Θ(n2) to compute strlen(s) n
times.

Example. Suppose that x and y are two values of type int. It takes
only one machine-language instruction to compute x + y. Obviously,
that is a fixed amount of time. If f(n) = 1, then f(n) is a polynomial
of degree 0, and f(n) is Θ(1).

Big-O and big-Theta notation and logarithms

Logarithms grow very slowly, much slower than any polynomial. We
will encounter algorithms whose time function is Θ(n log

2
(n)). That is

3

only slightly worse than Θ(n). Here are a few approximate values of n,
n log

2
(n) and n2.

n n log
2
(n) n2

10 30 100
100 700 10,000
1000 10,000 1,000,000

10,000 300,000 100,000,000

Exercises

Read page 36A in the notes. Do the exercises at the bottom of page
36A.

4

