
Computer Science 2530
April 6, 2020

Happy Monday, April 6.

Today’s topic is binary trees, including what a binary tree is, terminol-
ogy for binary trees, and how to define elementary functions

Binary trees

Read page 38A, which describes binary trees. Here is a sample binary
tree, which we refer to as Tree 1.

5

9 15

16 4

Terminology is as follows.

• Each circle in the diagram is called a node.

• A binary tree is either an empty tree, having no nodes, or a
nonempty tree, having one or more nodes. An empty tree is
represented by a null pointer .

• The root of nonempty tree is the node at the top, which is the
one holding 5 in Tree 1. A nonempty tree is represented by a
pointer to its root.

• Each node has two subtrees , its left subtree and its right sub-
tree. The left subtree of the root of Tree 1 is

9

16 4

and the right subtree has just one node, containing 15.

• Each node holds three things: an integer called the node’s item ,
a pointer to a left subtree and a pointer to a right subtree.

1



• Pointers point downwards in the tree. By convention, we don’t
show arrows in tree diagrams. Also, by convention, an empty
subtree (a null pointer) is not shown in a tree diagram unless the
whole tree is empty.

• Suppose v is a node in a binary tree. If the left subtree of v is
nonempty, then the root of v’s left subtree is called the left child
of v. If the right subtree of v is nonempty, then the root of v’s
right subtree is called the right child of v.

For example, in Tree 1, the node holding 9 is the left child of the
root and the node holding 15 is the right child of the root.

• If u is the left or right child of node v, then v is called the parent
of u. For example, the node holding 9 is the parent of the node
holding 4 in Tree 1.

• A node that has two empty subtrees is called a leaf .

Exercises

Do the exercises at the bottom of page 38A.

Trees in C++

Page 38B shows a definition of type Node; a binary tree is a pointer
to a Node. Here is the definition of Node.

struct Node

{

int item; // Information at this node

Node* left; // The left subtree

Node* right; // The right subtree

Node(int it, Node* lft, Node* rgt)

{

item = it;

left = lft;

right = rgt;

}

};

Notice that a node contains an integer item and two pointers, pointing
to the left and right subtrees of the node.

2



Nondestructive functions on binary trees

When defining a function on a binary tree, keep these facts in mind.

1. There are two kinds of binary tree: an empty tree and a nonempty
tree.

2. An empty tree is a NULL pointer.

3. A nonempty tree is a pointer to a node that has three parts: an
item, a left subtree and a right subtree.

A function that works on a tree usually has a case to handle an empty
tree and one or more cases to handle nonempty trees.

Example: numNodes(T)

Here is a simple example: function numNodes(T ) returns the number
of nodes in tree T . An empty tree has no nodes. Look at an example
of a nonempty tree, Tree 1 from above.

5

9 15

16 4

The left subtree of Tree 1 has 3 nodes. The right subtree has 1 node.
Tree 1 has 3 + 1 + 1 = 5 nodes, counting

(a) the nodes in the left subtree,

(b) the nodes in the right sutree,

(c) the root.

3



int numNodes(const Node* T)

{

if(T == NULL)

{

return 0;

}

else

{

return 1 + numNodes(T->left) + numNodes(T->right);

}

}

cubes(T)

Function cubes(T ) returns a tree that you get by replacing each item
x by x

3. For example, if T is tree

1

2 3

4 2

then cubes(T ) should return the following tree.

1

64 8

8 27

Since it cannot change tree T , cubes(T ) needs to build new nodes. For
that, it uses new Node(i, L, R) where i is the desired item in the new
Node, L is the desired left subtree and R is the desired right subtree.

Suppose T is a nonempty tree, with item x, left subtree L and right
subtree R. Then cubes(T ) is a tree whose root is a node with item
x
3, whose left subtree is the tree returned by cubes(L) and whose right

subtree is the tree returned by cubes(R). Look at the trees above to
see that.

Here is a definition of cubes(T ) that follows those observations.

4



int cube(int x)

{

return x*x*x;

}

Node* cubes(const Node* T)

{

if(T == NULL)

{

return NULL;

}

else

{

return new Node(cube(T->item), cubes(T->left), cubes(T->right));

}

}

Reading and exercises

Read page 38C in the notes and work the exercises at the bottom of
the page. Here are some hints.

1. To define numLeaves(T ), use top-down design. Create a function
isLeaf(T ), which returns true if T is a leaf.

• How many leaves does an empty tree have?

• How many leaves does a tree have if its root is a leaf?

• How can you find the number of leaves in a nonempty tree
if the root is not a leaf?

Look at a small example, and use it to guide you in the case of a
nonempty tree.

2. Have a case for an empty tree and a case for a nonempty tree.

3. Nonneg(T ) returns a tree (a pointer to a Node). What tree should
nonneg(NULL) return? If T is nonempty, then nonneg(T ) returns
a pointer to a node that is constructed using new Node(i, L,
R) for three particular values i, L and R. What should they be?
Work from an example.

5


