Computer Science 2530
April 6, 2020

Happy Monday, April 6.

Today’s topic is binary trees, including what a binary tree is, terminol-
ogy for binary trees, and how to define elementary functions

Binary trees

Read page 38A, which describes binary trees. Here is a sample binary
tree, which we refer to as Tree 1.

Terminology is as follows.

e Fach circle in the diagram is called a node.

e A binary tree is either an empty tree, having no nodes, or a
nonempty tree, having one or more nodes. An empty tree is
represented by a null pointer.

e The root of nonempty tree is the node at the top, which is the
one holding 5 in Tree 1. A nonempty tree is represented by a
pointer to its root.

e Each node has two subtrees, its left subtree and its right sub-
tree. The left subtree of the root of Tree 1 is

and the right subtree has just one node, containing 15.

e FEach node holds three things: an integer called the node’s item,
a pointer to a left subtree and a pointer to a right subtree.



Pointers point downwards in the tree. By convention, we don’t
show arrows in tree diagrams. Also, by convention, an empty
subtree (a null pointer) is not shown in a tree diagram unless the
whole tree is empty.

Suppose v is a node in a binary tree. If the left subtree of v is
nonempty, then the root of v’s left subtree is called the left child
of v. If the right subtree of v is nonempty, then the root of v’s
right subtree is called the right child of v.

For example, in Tree 1, the node holding 9 is the left child of the
root and the node holding 15 is the right child of the root.

If u is the left or right child of node v, then v is called the parent
of u. For example, the node holding 9 is the parent of the node
holding 4 in Tree 1.

A node that has two empty subtrees is called a leaf.

Exercises

Do the exercises at the bottom of page 38A.

Trees in C++

Page 38B shows a definition of type Node; a binary tree is a pointer
to a Node. Here is the definition of Node.

struct Node

{

};

int item; // Information at this node
Nodex left; // The left subtree
Node* right; // The right subtree

Node(int it, Nodex 1ft, Node* rgt)

{
item = it;
left = 1ft;
right = rgt;
b

Notice that a node contains an integer item and two pointers, pointing
to the left and right subtrees of the node.



Nondestructive functions on binary trees

When defining a function on a binary tree, keep these facts in mind.

1. There are two kinds of binary tree: an empty tree and a nonempty
tree.

2. An empty tree is a NULL pointer.

3. A nonempty tree is a pointer to a node that has three parts: an
item, a left subtree and a right subtree.

A function that works on a tree usually has a case to handle an empty
tree and one or more cases to handle nonempty trees.

Example: numNodes(T)

Here is a simple example: function numNodes(T") returns the number
of nodes in tree T. An empty tree has no nodes. Look at an example
of a nonempty tree, Tree 1 from above.

The left subtree of Tree 1 has 3 nodes. The right subtree has 1 node.
Tree 1 has 3 + 1 + 1 = 5 nodes, counting

(a) the nodes in the left subtree,
(b) the nodes in the right sutree,

(c) the root.



int numNodes(const Nodex T)
{

if (T == NULL)

{

return O;

}

else

{

return 1 + numNodes(T->left) + numNodes(T->right);
}
}

cubes(T)

Function cubes(T") returns a tree that you get by replacing each item
x by 23, For example, if T is tree

then cubes(T") should return the following tree.

(1)
ClO
® @

Since it cannot change tree T, cubes(T") needs to build new nodes. For
that, it uses new Node(i, L, R) where i is the desired item in the new
Node, L is the desired left subtree and R is the desired right subtree.

Suppose T’ is a nonempty tree, with item =z, left subtree L and right
subtree R. Then cubes(T) is a tree whose root is a node with item
23, whose left subtree is the tree returned by cubes(L) and whose right
subtree is the tree returned by cubes(R). Look at the trees above to
see that.

Here is a definition of cubes(7T) that follows those observations.



int cube(int x)

{

return X*x*Xx;
}
Node* cubes(const Node* T)
{

if (T == NULL)

{

return NULL;

}

else

{

return new Node(cube(T->item), cubes(T->left), cubes(T->right));
}
}

Reading and exercises

Read page 38C in the notes and work the exercises at the bottom of
the page. Here are some hints.

1. To define numLeaves(7'), use top-down design. Create a function
isLeaf(T"), which returns true if 7" is a leaf.

e How many leaves does an empty tree have?
e How many leaves does a tree have if its root is a leaf?
e How can you find the number of leaves in a nonempty tree

if the root is not a leaf?

Look at a small example, and use it to guide you in the case of a
nonempty tree.

2. Have a case for an empty tree and a case for a nonempty tree.

3. Nonneg(T) returns a tree (a pointer to a Node). What tree should
nonneg(NULL) return? If T is nonempty, then nonneg(7") returns
a pointer to a node that is constructed using new Node(i, L,
R) for three particular values i, L and R. What should they be?
Work from an example.



