
prev next

9 Uncomputable Problems

9.1 A problem about polynomials

There is a another problem about multivariate polynomials that is concerned
with integer solutions.

Definition 9.1. The integer-zero problem takes a multivariate polynomial
p as input and asks whether there are integer values (members or Z) for the
variables that occur in p that make p = 0.

In 1900, mathematician David Hilbert posed a list major challenges in math-
ematics. The tenth problem in the list was to find an algorithm to solve the
integer-zero problem or to show that no such algorithm exists. It was not
until 1970 that Hilbert’s Tenth Problem was solved, in the negative. Russian
mathemetician Yuri Matiyasevich showed that the integer-zero problem is
uncomputable.

A proof that Hilbert’s Tenth Problem is not computable is far out of reach
for us. Matiyasevich relied on work by Martin Davis, Hilary Putnam and
Julia Robinson spanning 21 years, and they relied on prior work. But we will
be able to prove that some other problems are uncomputable.

9.2 Infinite loops

Recall that we only say that program p computes function f or language L
if p stops on every input. But that there are programs that do not stop on
every input (that, by definition, do not compute any function or language).

Let’s write Run(p, x) to indicate the value that program p returns when it
is given input (or parameter) x. Because a program might not always stop,
Run(p, x) might not have a value. It is useful to create a special value, ⊥
(called “bottom”), and say that Run(p, x) = ⊥ when p runs forever on input
x.
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You can’t know by running p on input x whether it loops forever; it might just
take a very, very long time to stop. But, from a mathematical standpoint, p
either stops or it doesn’t, so either Run(p, x) = ⊥ or Run(p, x) 6= ⊥.

When a “value” might be ⊥, we use relation ∼= instead of =, where x ∼= y is
read as “x is equivalent to y.”

Definition 9.2. If x and y are strings then x ∼= y↔x = y. Also, ⊥ ∼= ⊥.
But x 6∼= ⊥ and ⊥ 6∼= x for any string x.

Definition 9.3. Run(p, x)↓ (p halts on input x) is equivalent to Run(p, x) 6∼=
⊥. Run(p, x)↑ (p does not halt on input x) is equivalent to Run(p, x) ∼= ⊥.

9.3 Interpreters

Your familiarity with computers tells you that, except for resource limita-
tions, any computer can run programs written in any programming language.
For example, you can run a Python program on a computer by loading a
Python interpreter onto it.

Interpreters are important tools of computability theory. An interpreter al-
lows you to take a program (a string) and run it inside some other program.
Running a program via an interpreter must produce the same results as run-
ning it directly.

Definition 9.4. An interpreter is a program I having the property that, for
every program p and string x, Run(I, (p, x)) ∼= Run(p, x).

It is a crucial property of computability theory that interpreters exist. Prov-
ing that is obviously a big chore (you need to write an interpreter) and we
will not try to do that.

Theorem 9.1. There exists a program I that is an interpreter.

Because we know that an interpreter exists, it is acceptable to write Run(p, x)
within the body of a program, where p is a string that is either a parameter
of the program or that is computed by the program. Running p is just a
matter to running a fixed program, the interpreter, that can be built into
your own program.
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9.4 Problems about programs

Some decision problems ask questions about programs. An easy one is: Does
program p contain a variable called z? But consider the following decision
problem, analogous to the acceptance problem for FSMs.

Definition 9.5. The acceptance problem for programs is the following deci-
sion problem.

Input. Program p and string x.

Question. Is Run(p, x) ∼= 1?

An obvious approach to solving the acceptance problem is to run p on input
x and see whether the result is 1. But what if p loops forever? Clearly, that
approach does not work.

We have seen that the failure of an obvious approach does not allow us to
conclude that no algorithm exists. Concluding that the acceptance problem
is not computable needs a rock-solid proof. We will give such a proof in a
later section.

9.5 An uncomputable decision problem

Now we identify a decision problem that we can prove is uncomputable.

Definition 9.6. The Halting Problem is language

HLT = {(p, x) | Run(p, x)↓}.

That is, it is the following decision problem.

Input. Program p and string x.

Question. Does p ever stop when it is run on input x?

Theorem 9.2. The Halting Problem is not computable.

Proof.
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1. The proof is by contradiction. Start by assuming that the Halting
Problem is computable.

Know: The Halting Problem is computable.

Goal: F.

2. Now we know something that uses term computable, and that suggests
using a definition. By the definition of a computable decision problem,
saying that HLT is computable is equivalent to saying that there exists
a program r that stops on all inputs and where, for all y,

Run(r, y) ∼= 1↔ y ∈ HLT,

Run(r, y) ∼= 0↔ y 6∈ HLT,

But HLT is a set or ordered pairs. It only makes sense to ask if y ∈ HLT
if y is an ordered pair. So lets say that y = (p, x).

Know: There exists a program r that halts on all inputs so
that, for all p and x, Run(r, (p, x)) ∼= 1↔ (p, x) ∈
HLT and Run(r, (p, x)) ∼= 0↔ (p, x) 6∈ HLT.

Goal: F.

3. When you know there exists something with a particular property, you
ask someone else to give you such a thing. Let’s do that, and call the
program that was given to us r. The fact that r halts on all inputs is
implicit in the two equivalences (1) and (2).

Known variables: r (a program)

Know (1): For all p and x, Run(r, (p, x)) ∼= 1↔ (p, x) ∈ HLT.

Know (2): For all p and x, Run(r, (p, x)) ∼= 0↔ (p, x) 6∈ HLT.

Goal: F.

4. By the definition of HLT,

(p, x) ∈ HLT↔Run(p, x)↓ .
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Known variables: r (a program)

Know (1): For all p and x, Run(r, (p, x)) ∼= 1↔Run(p, x)↓ .
Know (2): For all p and x, Run(r, (p, x)) ∼= 0↔Run(p, x)↑ .
Goal: F.

5. So far everything has been boilerplate for a proof by contradition. We
have only used definitions. Now comes the inspiration. Every program-
mer knows how to write an infinite loop. We will allow ourselves to
write “loop forever” in a program to indicate an infinite loop. Let’s
define program s as follows.

"{s(z):
if Run(r, (z, z)) = 1

loop forever
else

return 1
}"

That program looks like it comes out of nowhere, but the discussion
after this proof gives motivation for defining it. Program s is written
to have two properties.

Run(r, (z, z)) ∼= 1→ Run(s, z)↑ .

Run(r, (z, z)) ∼= 0→ Run(s, z)↓ .

Both of those properties should be obvious from the definition of s.

Known variables: r and s (two programs)

Know (1): For all p and x, Run(r, (p, x)) ∼= 1→ Run(p, x)↓ .
Know (2): For all p and x, Run(r, (p, x)) ∼= 0→ Run(p, x)↑ .
Know (3): For all z, Run(r, (z, z)) ∼= 1→ Run(s, z)↑ .
Know (4): For all z, Run(r, (z, z)) ∼= 0→ Run(s, z)↓ .
Goal: F.
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6. Since facts (1) and (2) hold for all p and x, they must hold for p = s
and x = s. Since facts (3) and (4) hold for all z, they must hold for
z = s. (Here, we make use of the fact that program s is a string.)
Making those substitutions yields the following.

Known variables: r and s (two programs)

Know (1): Run(r, (s, s)) ∼= 1↔Run(s, s)↓ .
Know (2): Run(r, (s, s)) ∼= 0↔Run(s, s)↑ .
Know (3): Run(r, (s, s)) ∼= 1→ Run(s, s)↑ .
Know (4): Run(r, (s, s)) ∼= 0→ Run(s, s)↓ .
Goal: F.

7. Using known facts (3) and then (2), we get

Run(r, (s, s)) ∼= 1 → Run(s, s)↑
→ Run(r, (s, s)) ∼= 0

If Run(r, (s, s)) ∼= 1, that leads to a contradiction. (Run(r, (s, s))
cannot be both 1 and 0.) So it is not possible for Run(r, (s, s)) ∼= 1.

Using known facts (4) and then (1), we get

Run(r, (s, s)) ∼= 0 → Run(s, s)↓
→ Run(r, (s, s)) ∼= 1

If Run(r, (s, s)) ∼= 0, that also leads to a contradiction. So it is not
possible for Run(r, (s, s)) ∼= 0.

But facts (1) and (2) tell us that Run(r, (s, s)) must be either 0 or 1.
(After all, either Run(s, s) ↑ or Run(s, s) ↓.) So no matter what, we
have reached a contradiction, and have proved F.

♦ ♦

What was the motivation for program s in step 5? Notice that, later in the
proof, we are only concerned with what s does when its parameter z is s.
But, when z is s, the definition of s look as follows.
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"{s(s):
if Run(r, (s, s)) = 1

loop forever
else

return 1
}"

(That is not really allowed, since we cannot define a function with its pa-
rameter being itself, but let’s allow it to understand where the definition of
s comes from.)

Now remember that Run(r, (p, x)) ∼= 1 if and only if Run(p, x) ↓ because
r was chosen to be a program that solves the halting problem. In the if-
statement, s asks r whether s halts on input s. If r says that s halts on
input s, then s says, not I don’t, and enters an infinite loop. If r says that s
does not halt on input s, then s says, yes I do, and s halts and returns 1.

In fact, the proof is quite constructive in the sense that, for every program
r that purports to solve the Halting Problem, the proof provides an input
(s, s) that r answers incorrectly.

9.6 Diagonalization

The above proof that the Halting Problem is uncomputable uses pairs of
strings of the form (s, s). If you think about points in the Cartesian plane,
points of the form (x, x) are on the diagonal defined by equation y = x.
Based on that analogy, the proof that the Halting Problem is uncomputable
is called a proof by diagonalization.
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