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1 Review of Propositional Logic

This section reviews propositional logic, which you should already have seen.

BIG IDEA: Logic lies at the heart of mathematical reasoning. It is also
essential for an understanding of how computers work.

Additional reading: Cummings, Chapter 5.

1.1 Syntax of Propositional Logic

A propositional formula is an expression of propositional logic, such as p→ q.
A propositional formula is also called a compound proposition. I will use the
term propositional formula.

The syntax of propositional logic only says what a propositional formula
looks like. It does not say what a propositional formula means. We use A,
B, C and φ (Greek letter phi) to name arbitrary propositional formulas.

Definition 1.1. A propositional formula is defined as follows.

1. Symbols T and F are propositional formulas.

2. A propositional variable is a propositional formula. We will use p, q,
r and s, possibly with subscripts, as propositional variables and X to
refer to an arbitrary variable.

3. If A and B are propositional formulas then so are

(a) A ∨B,

(b) A ∧B,

(c) A→ B,

(d) A ↔ B,

(e) ¬A,

(f) (A).
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For example, each of the following is a propositional formula.

• p

• p ∨ q

• p ∧ ¬q

• p ∧ q ∧ r

• q ∨ p ∧ r

• (r ∧T) ∨ ¬q

• (p→ (q → p))

Operator ∨ is read “or”, ∧ is read “and”, → is read “implies”, ↔ is read
“if and only if” and ¬ is read “not”.

1.1.1 Precedence and Associativity

Rules of precedence and associativity determine how you break a proposi-
tional formula into subformulas. Higher precedence operators are done first.
The following lists operators by precedence, from highest to lowest.

Precedence

parentheses high

¬

∧

∨

→

↔ low
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For example, p∨ q∧ r is understood to have the same structure as p∨ (q∧ r)
since ∧ has higher precedence than ∨.

Associativity determines how an expression is broken into subexpressions
when it involves two or more occurrences of the same operator. We assume
that operators ∨ and ∧ are done from left to right. That is, they are left-
associative. (Associativity is like the wind. A north wind blows from north
to south.) For example, p ∨ q ∨ r has the same structure as (p ∨ q) ∨ r.
Associativity does not really matter for ∨ and ∧ because they are associative
operators . That is, (p ∨ q) ∨ r and p ∨ (q ∨ r) always have the same value.

Associativity does matter for some operators, so it is wise to think about it.
By convention, operators→ and↔ are done from right to left. So p→ q → r
has the same meaning as p→ (q → r). However, we will always parenthesize
when the associativity of → and ↔ would be needed if the parentheses were
omitted, to avoid confusion.

1.2 Meaning of Propositional Logic

The meaning of a propositional formula can only be defined when the values
of all of its variables are given. Each variable can be true or false.

Definition 1.2. A truth-value assignment is a set of components of the
form X = V where X is a variable and V is either T or F. For example,
{p=T, q=F} is a truth-value assignment.

Definition 1.3. If a is a truth-value assignment and X is a variable then
a(X) is the value (T or F) that a gives for variable X. For example, if a is
{p=T, q1=F} then a(p) = T and a(q) = F.

Definition 1.4. Suppose that φ is a propositional formula and a is a truth-
value assignment that defines every variable that occurs in φ. Notation (a a
φ) indicates the value of φ (either T or F) when variables have values given
by a. Specifically:

1. (a a T) = T. That is, symbol T is always true.

2. (a a F) = F. That is, symbol F is always false.

5



3. If X is a variable then (a a X) = a(X). That is, X has the value that
it is given by truth-value assignment a.

4. (a a A ∨ B) is T if at least one of (a a A) and (a a B) is T, and is
F otherwise. For example, ({p=T, q=F} a p ∨ q) is T because ({p=T,
q=F} a p) is T, and we only need one of p and q to be true.

5. (a a A ∧ B) is T if both of (a a A) and (a a B) are T, and is F
otherwise. For example, ({p=T, q=F} a p ∧ q) is F because ({p=T,
q=F} a p) and ({p=T, q=F} a q) are not both T.

6. (a a A → B) has the same meaning as (¬A) ∨ B. Implication is
discussed further below.

7. (a a A ↔ B) is true if (a a A) and a a B have the same value. For
example, ({p=T, q=F} a p ↔ q) is F because p and q do not have the
same value. But ({p=F, q=F} a p ↔ q) is T because p and q have
the same value.

8. (a a ¬A) is T if (a a A) is F, and is F is (a a A) is T.

9. (a a (A)) = (a a A). Parentheses only influence the structure of
a propositional formula. A parenthesized formula (A) has the same
meaning as A.

You determine the value of a propositional formula by building up larger
and larger subexpressions, being careful to follow the rules of precedence and
associativity. For example, suppose that a = {p=F, q=T, r=T}. Then

(a) (a a q) = T

(b) (a a p) = F

(c) (a a ¬p) = T by (b)

(d) (a a ¬p ∧ q) = T by (a) and (c)
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1.3 Implication

Intuitively, A → B means “if A is true then B is true.” But that is not its
definition. Its definition is that either A is false or B is true (or both). Notice
that, if B is true, then A→ B is true, by definition. Also, if A is false, then
A→ B is true, by definition.

1.4 Truth Tables

Since the value of a propositional formula depends on the values of its vari-
ables, one way to understand what the formula means is to look at its value
for all possible values of the variables. That leads to the idea of a truth table
of a propositional formula. The following is a truth table for ¬p ∨ q.

p q ¬ p ∨ q

F F T F T F

F T T F T T

T F F T F F

T T F T T T

Under each variable, we write that variable’s value. Under each operator, we
write the value of the formula having that operator as its main or outermost
operator. The column in blue is the value of the entire formula, ¬p ∨ q.

1.5 Validity

Definition 1.8. Propositional formula φ is valid if (a a φ) is true for every
truth value assignment a. A valid formula is also called a tautology .

For example, operator ∨ is commutative. Another way to say that is to say
that formula

(P ∨Q) ↔ (Q ∨ P )

is valid. Let’s check that using a truth table.
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p q (p ∨ q) ↔ (q ∨ p)

F F F F F T F F F

F T F T T T T T F

T F T F F T F T T

T T T T T T T T T

The validity of
(p ∨ q) ↔ (q ∨ p)

is evident from the blue column of all T’s.

Table 1.9 shows a collection of propositional formulas that are all valid. It is
worth noting that ¬(p → q) is equivalent to p ∧ ¬q. That is, p → q is false
exactly when p is true and q is false. We will need that when doing proofs
by contradiction.

Valid equivalences give you a way to replace one formula by another. For
example, if you see p ∨ q in any context, you can replace it by q ∨ p.
In fact, you can replace any variable by any propositional formula in any
of the above tautologies (or any other valid propositional formula) and they
are still valid, provided (1) you replace every occurrence of a variable by
the same propositional formula and (2) you use parentheses to avoid rules
of precedence from rearranging the formula. For example, the commutative
law for ∧ says that

p ∧ q ↔ q ∧ p.
Replacing p by (w → v) and q by ¬r yields

(w → v) ∧ ¬R ↔ ¬R ∧ (w → v)

which is also valid.

Thinking ahead. You can determine whether a propositional formula is
valid using a truth table. If the formula has n variables, the truth table has
2n lines. That is not a problem when n is small, but what if your formula
has 100 variables? 2100 is gigantic! An obvious question is: Does there exist
an algorithm to determine whether a propositional formula is valid that is
efficient enough to be used on long formulas that have a lot of variables? We
will come back to this problem at the end of this term.
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Table 1.9: Some propositional tautologies

Equivalence Name

¬(¬p) ↔ p double negation

p ∨ q ↔ (q ∨ p) commutative law of ∨

p ∧ q ↔ (q ∨ p) commutative law of ∧

(p ∨ q) ∨ r ↔ p ∨ (q ∨ r) associative law of ∨

(p ∧ q) ∧ r ↔ p ∧ (q ∧ r) associative law of ∧

(p ∧ (q ∨ r) ↔ (p ∨ q) ∧ (p ∨ r) distributive law of ∧ over ∨

(p ∨ (q ∧ r) ↔ (p ∧ q) ∨ (p ∧ r) distributive law of ∨ over ∧

¬(p ∨ q) ↔ ¬p ∧ ¬q DeMorgan’s law for ∨

¬(p ∧ q) ↔ ¬p ∨ ¬q DeMorgan’s law for ∧

¬(p→ q) ↔ p ∧ ¬q DeMorgan’s law for →

p→ q ↔ ¬q → ¬p Law of the contrapositive

(p ∨ q)→ r ↔ (p→ r) ∧ (q → r) cases

(p ∧ q)→ r ↔ (p→ (q → r))

p ∧ ¬p ↔ F contradiction 1

p ↔ (¬p→ p) contradiction 2

p ↔ (¬p→ F) contradiction 3

p ∨ ¬p Law of the excluded middle

p→ p Law of the excluded middle, re-
stated using →

¬(p ∧ ¬p) Law of the excluded middle (De-
Mogan variant)

p→ (q → p)

¬p→ (p→ q)
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2 Review of First-Order Logic

First-order logic (also called predicate logic) is an extension of propositional
logic that is much more useful than propositional logic. It was created as a
way of formalizing common mathematical reasoning. You should have seen
first-order logic previously. This section intended to be review.

In first-order logic, you start with a nonempty set of values called the universe
of discourse U . Logical statements talk about properties of values in U and
relationships among those values.

2.1 Predicates

In place of propositional variables, first-order logic uses predicates .

Definition 2.1. A predicate P takes zero or more parameters x1, x2, . . . , xn
and yields either true or false. First-order formula P (x1, . . . , xn) is the value
of predicate P with parameters x1, . . . , xn. A predicate with no parameters
is a propositional variable equivalent to a propositional variable.

Suppose that U is the set of all integers. Here are some examples of pred-
icates. There is no standard collection of predicates that are always used.
Rather, each of these is like a function definition in a computer program;
different programs contain different functions.

• We might define even(n) to be true if n is even. For example even(4)
is true and even(5) is false.

• We might define greater(x, y) to be true if x > y. For example,
greater(7, 3) is true and greater(3, 7) is false.

• We might define increasing(x, y, z) to be true if x < y < z. For example,
increasing(2, 4, 6) is true and increasing(2, 4, 2) is false.

We allow binary relations such = and < as predicates. For example, x =
y → y < z is a formula of first-order logi.
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2.2 Terms

A term is an expression that stands for a particular value in U . The simplest
kind of term is a variable, which can stand for any value in U .

A function takes zero or more parameters that are members of U and yields a
member of U . The following are examples of functions that might be defined
when U is the set of all integers.

• A function with no parameters is called a constant . We allow constants
such as 0 and 1.

• We might define successor(n) to be n+ 1. For example, successor(2) =
3.

• We might define sum(m,n) to be m+ n. For example, sum(5, 7) = 12.

• We might define largest(a, b, c) to be the largest of a, b and c. For
example, largest(3, 9, 4) = 9 and largest(4, 4, 4) = 4.

Definition 2.2. A term is defined as follows.

1. A variable is a term. We use single letters such as x and y for variables.

2. If f is a function that takes no parameters then f is a term (standing
for a value in U).

3. If f is a function that takes n > 0 parameters and t1, . . . , tn are terms
then f(t1, . . . , tn) is a term.

For example, sum(sum(x, y), successor(z)) is a term.

We allow notation such as x+ y and x− y as terms. That is, a function can
be written as a binary operator. That is just a notational convenience.

The meaning of a term should be clear, provided the values of variables are
known. Term sum(x, y) stands for the result that function sum yields on
parameters (x, y) (the sum of x and y).
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2.3 First-Order Formulas

Definition 2.3. A first-order formula is defined as follows.

1. T and F are first-order formulas.

2. If P is a predicate that takes no parameters then P is a first-order
formula.

3. If t1, . . . , tn are terms and P is a predicate that takes n > 0 parameters,
then P (t1, . . . , tn) is a first-order formula. It is true if P (v1, . . . , vn) is
true, where v1 is the value of term t1, v2 is the value of term t2, etc.

4. If t1 and t2 are terms then t1 = t2 is a first-order formula. (It is true if
terms t1 and t2 have the same value.)

5. If A and B are first-order formulas and x is a variable then each of the
following is a first-order formula.

(a) (A)

(b) ¬A
(c) A ∨B
(d) A ∧B
(e) A→ B

(f) A ↔ B

(g) ∀xA
(h) ∃xA

The meaning of parentheses, T, F, ¬, ∨, ∧, → and ↔ are the same as in
propositional logic. Symbols ∀ and ∃ are called quantifiers . You read ∀x as
“for all x”, and ∃x as “for some x” or “there exists an x”. They have the
following meanings.

1. ∀xA is true of A is true for all values of x in U .

2. ∃xA is true if A is true for at least one value of x in U .
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By convention, quantifiers have higher precedence than all of the operators
∧, ∨, etc.

Examples of first-order formulas are:

1. P (sum(x, y)) says that, if v = sum(x, y), then P (v) is true. Its value
(true or false) depends on the meanings of predicate P and function
sum, as well as on the values of variables x and y.

2. ∀x(greater(x, x)) says that greater(x, x) is true for every value x in
U . Using the meaning of greater(a, b) given above, ∀x(greater(x, x)) is
clearly false, since no x can be greater than itself.

3. ¬∀x(greater(x, x)) says that ∀x(greater(x, x)) is false. That is true.

4. ∃y(y = sum(y, y)) says that there exists a value y where y = y + y.
That is true since 0 = 0 + 0.

5. ∀x(∃y(greater(y, x))) says that, for every value v of x, first-order for-
mula ∃y(greater(y, v)) is true. That is true. If v = 100, then choose
y = 101, which is larger than 100. If v = 1000, choose y = 1001. If
v = 1, 000, 000, choose y = 1, 000, 001.

6. ∃y(∀x(greater(y, x))) says that there exists a value v of y so that
∀x(greater(v, x)). That is false. There is no single value v that is
larger than every integer x.
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3 Theorems and Proofs

A theorem is any mathematical statement, such as a formula of first-order
logic, that has been proved true or is about to be proved true. (When you
are about to prove a theorem, you call it theorem as a way of promising that
a proof is about to be produced.)

BIG IDEA: Doing proofs teaches you to reason carefully and to present
your ideas precisely. Writing computer software requires you to reason
carefully and to present your ideas (in the form of a computer program)
precisely. People who can do proofs are prepared for the rigors of software
development.

3.1 What Is a Proof?

There are many different precise definitions of a proof. But most mathe-
maticians accept an informal definition: a proof is a clear and unambiguous
argument that a mathematical statement is true and that any sufficiently
knowledgeable person can check. The key is that a reader must be able to
check that each step in the proof is correct.

Students who are just learning to do proofs make many different kinds of
mistakes, but most fall into one of the following two categories.

1. The student does not check his or her own work. The reason
for this can vary from lack of time to lack of understanding to fear of
failure.

Errors in elementary algebraic manipulations are surprisingly common.
Simply looking at your work with a critical eye will usually suffice to
find those errors.

When you do a proof, it is a good idea to look at proofs of similar
statements that you have already seen, and to modify those proofs to
work for your current goal. But be cautious! It is easy to end up with
something that makes no sense. Check the modified proof carefully
with a critical eye.

The student who has a lack of understanding cannot check the proof.
The only remedy is to gain the necessary understanding.
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The student who is afraid of failure will not check the proof out of fear
that it might turn out to be incorrect. That can be cured by adopting
a policy of checking everything that you write and fixing it when you
encounter an error. Take pride in your work and care whether it is
right.

Regardless of your reason for not checking your proof, you can be sure
that an unchecked proof is incorrect, for the same reasons that an
untested computer program does not work. You will need to find a
way to motivate yourself to check your proofs carefully.

2. Mathematics relies on precise definitions. When you do a proof, it is
essential for you to use definitions wherever appropriate. Students
often get stuck in a proof because they have forgotten to use
definitions. Any time you cannot see how to proceed, ask yourself if
using a definition will help. We will see examples of that.

3.2 Deus ex Machina

Deus ex machina is latin for “god from the machine.” In ancient plays,
there were certain rules that the playwright was required to follow. (Modern
movies have similar constraints. You are not allowed to kill off the hero, for
example, especially when the hero is played by a popular actor.) Sometimes
the playwright got his characters in a real bind, and he could not see how to
get them out of it. The solution was to have a platform rise up with an actor
on it dressed as a god. The actor would wave his arms and fix everything.

I have frequently found that students resort to deus ex machina in their
proofs. Having written part of a proof, the student finds that he or she
cannot make further progress. So he or she simply writes the goal and claims
that it has been proved. Voila!

I can only guess that a student does that in the hope of getting partial credit
for the part of the “proof” before pulling the goal out of the air. But pulling
the goal out of the air will decrease your score. It is better to admit that you
are stuck. Even better, back up and try a different approach, or check your
algebra; with correct algebra, you might not actually be in a bind at all.
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3.3 Forward Proofs

A forward proof reasons from what you know to what you can conclude. The
proof accumulates knowledge and (named) values until it reaches a point
where the goal is known. Each new conclusion can rely on prior knowledge
or conclusions.

You have probably been taught a different approach in an algebra class. In a
backwards proof , you write down what you want to show and then perform
some manipulations on it, working backwards to a statement that you already
know is true, such as x = x.

In this class, we will do forward proofs, with small excursions that typically
convert a goal into an equivalent goal, followed by a proof of the equivalent
goal. I expect you to use forward proofs as well. At least for this class,
put aside the backwards proofs that you have learned in algebra.

In this section, I do proofs at two different levels of detail. The first proof
of a theorem works in small steps and shows everything that you know after
each step. The second proof of the same theorem is more typical of what you
would write, and what I want to see from you.

3.4 Some Definitions

Definition 3.1. Integer n is even if there exists an integer m such that
n = 2m. For example, 6 is even because 6 = (2)(3).

Definition 3.2. Integer n is odd if there exists an integer m such that
n = 2m + 1. We will also make use of the fact that, for every n, n is odd if
and only if n is not even.

Definition 3.3. Integer n is a perfect square if there exists an integer m
such that n = m2.

Definition 3.4. Real number x is rational if there exist integers n and m
where m 6= 0 such that x = n/m.
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3.5 Proving A Implies B

Additional reading: Cummings, Section 2.1.

You typically prove an implication by direct proof : To prove A → B,
assume that A is true and show that B is true. That is, add A to your
knowledge. Then prove B.

Example Theorem 3.5. If n is even then n2 is even.

Detailed Proof.

1. Suppose that n is even.

Known variables: n

Know: n is even.

Goal: n2 is even.

2. By the definition of an even integer, there exists an integer m such that
n = 2m.

Known variables: n, m

Know: n is even.

Know: n = 2m.

Goal: n2 is even.

3. Since n = 2m, n2 = (2m)2 = 4m2 = 2(2m2).

Known variables: n, m

Know: n is even.

Know: n = 2m.

Know: n2 = 2(2m2).

Goal: n2 is even.

4. So n2 = 2(x) where x = 2m2. Using the definition of an even number
again, n2 is even.
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♦

Typical Proof. Suppose n is even. By the definition of an even integer,
there is an integer m such that n = 2m. So

n2 = (2m)2 = 4m2 = 2(2m2).

By the definition of an even integer, n2 is even.

♦

Example Theorem 3.6. If n and m are perfect squares then nm is a perfect
square.

Detailed Proof.

1. Suppose that n and m are perfect squares.

Known variables: n, m

Know: n is a perfect square.

Know: m is a perfect square.

Goal: nm is a perfect square.

2. By the definition of a perfect square, there exist integers x and y such
that n = x2 and m = y2.

Known variables: n, m, x, y

Know: n = x2.

Know: m = y2.

Goal: nm is a perfect square.

3. Replacing n by x2 and m by y2, nm = x2y2 = (xy)2.

Known variables: n, m, x, y

Know: n = x2.

Know: m = y2.

Know: nm = (xy)2.

Goal: nm is a perfect square.
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4. So nm = z2 where z = xy. Using the definition of a perfect square
again, nm is perfect square.

♦

Typical Proof. Suppose that n and m are perfect squares. By the definition
of a perfect square, there exist integers x and y such that n = x2 and m = y2.
Replacing n by x2 and m by y2,

nm = x2y2 = (xy)2.

So nm is a perfect square.

♦

3.5.1 Using the Contrapositive

Additional reading: Cummings, Chapter 6.

You can prove any theorem by proving an equivalent mathematical state-
ment. For example, you can prove A → B by proving equivalent formula
¬B → ¬A, which is called the contrapositive of A→ B. Here is an example.

Example Theorem 3.7. Suppose n is an integer. If 3n+ 2 is odd, then n
is odd.

Detailed Proof. We prove the contrapositive: If n is not odd then 3n + 2
is not odd.

1. We know that an integer x is even if and only if x is not odd. So what
we want to prove is equivalent to: If n is even then 3n+ 2 is even.

Known variables: n

Goal: If n is even then 3n+ 2 is even.

2. Suppose that n is even.

Known variables: n

Know: n is even.

Goal: 3n+ 2 is even.
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3. By the definition of an even integer, there exists an integer m such that
n = 2m.

Known variables: n, m

Know: n = 2m.

Goal: 3n+ 2 is even.

4. 3n+ 2 = 3(2m) + 2 = 6m+ 2 = 2(3m+ 1).

Known variables: n, m

Know: n = 2m.

Know: 3n+ 2 = 2(3m+ 1).

Goal: 3n+ 2 is even.

5. Using the definition of an even integer again, 3n + 2 is even because
3n+ 2 = 2z where z = 3m+ 1.

♦

Typical Proof. We prove the contrapositive: If n even then 3n+ 2 is even.

Suppose n is even. Then there exists an integer m such that n = 2m.

3n+ 2 = 3(2m) + 2 = 6m+ 2 = 2(3m+ 1).

Since 3n+ 2 is twice an integer, 3n+ 2 is even.

♦

3.6 Proving and Using (A and B)

To prove A ∧B, prove A and prove B.

If you know that A ∧B is true, then you know that A is true and you know
that B is true.
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3.7 Proving and Using not(A)

To prove ¬(A), you typically use DeMorgan’s laws and the laws for negating
quantified formulas to push the negation inward. For example, to prove
¬(A ∧ B), you prove equivalent formula ¬A ∨ ¬B. To prove ¬(∀xA), you
prove equivalent formula ∃x(¬A).

The same principle applies when you already know ¬(A). For example, if
you know ¬(A → B), you can conclude equivalent formula A ∧ ¬B. You
write that down as an additional known fact.

3.8 Proving and Using (A or B)

To prove A ∨ B, you usually prove one of the equivalent formulas ¬A → B
or ¬B → A.

Suppose that you know that A∨B is true and you want to use that to show
that C is true. That is, you want to show that A ∨ B → C is true. You
typically prove equivalent formula

A→ C ∧ B → C.

That is called proof by cases. First, you assume that A is true and show that
C is true. Next, you assume that B is true and show that C is true. See
Section 3.13.

Proof by cases requires you to do each case in a silo. Assumptions made
while proving A→ C cannot be used when proving B → C. When you start
to prove B → C, your knowledge reverts to what it was when you were just
about to start to prove A→ C.

3.9 Proving and Using Existential Statements

To prove that something exists, produce it. That is called a constructive
existence proof.

Example Theorem 3.8. There exists an integer n where n is even and n
is prime.

Proof. Choose n = 2. Notice that n is even and n is prime.

♦
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3.9.1 Using Existential Knowledge

Sometimes, instead of needing to prove ∃xP (x), you already know ∃xP (x).
What do you do? You ask somebody else to give you a value x so that P (x)
is true. It is not necessary for you to say how to find x. We will encounter
many examples of that.

3.10 Proving Universal Statements

To prove ∀xP (x), prove P (x) for an arbitrary value of x.

That does not mean that you can choose the value of x. Rather, someone else
chooses x and you must prove that P (x) is true for that value of x. Think of
it as a challenge. You say to someone else, give me any value of x that you
like. I will prove that P (x) is true. In mathematics, arbitrary always means
a value chosen by someone else.

We have actually used this idea above. When the statement of a theorem
involves unbound (unquantified) variables, it is assumed to be saying that
the statement is true for all values of those variables. Here is the first proof
above with the quantifier explicit. The universe of discourse is the set of all
integers.

Example Theorem 3.9. ∀n(n is even → n2 is even).

Detailed Proof.

1. Ask someone else to select an arbitrary integer n. (We cannot assume
anything about n except that it belongs to the universe of discourse.)
We must prove: (n is even → n2 is even) for that n.

Known variables: n

Goal: n is even → n2 is even.

2. Suppose that n is even.

Known variables: n

Know: n is even.

Goal: n2 is even.
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3. By the definition of an even integer, there exists an integer m such that
n = 2m.

Known variables: n

Know: ∃m(n = 2m).

Goal: n2 is even.

4. Ask someone else to provide the integer m that is asserted to exist.

Known variables: n, m

Know: n = 2m.

Goal: n2 is even.

5. Since n = 2m, n2 = (2m)2 = 4m2 = 2(2m2).

Known variables: n, m

Know: n = 2m.

Know: n2 = 2(2m2).

Goal: n2 is even.

6. So n = 2(x) where x = 2m2. Using the definition of an even number
again, n is even.

♦

Typical Proof. Let n be an arbitrary even integer. By the definition of an
even integer, there exists an integer m such that n = 2m. So

n2 = (2m)2 = 4m2 = 2(2m2).

Evidently, n2 is even.

♦

3.10.1 Proof by Contradiction

Additional reading: Cummings, Chapter 7.
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You can prove any theorem by proving an equivalent theorem. We have seen
propositional tautology

p ↔ (¬p→ F).

That is, to prove p, assume that p is false and prove that F is true. Typically,
you use the tautology

(q ∧ ¬q) ↔ F

to prove F by proving a statement and its negation. That is called proof by
contradiction. Let’s use proof by contradition to reprove a theorem that we
proved above.

Example Theorem 3.10. For every integer n, if 3n + 2 is odd, then n is
odd.

Detailed Proof.

1. Reasoning by contradiction, we can assume the theorem is false and
prove F. That is:

Know: ¬∀n(3n+ 2 is odd → n is odd).

Goal: F.

2. We can push the negation across the quantifier using valid formula
¬∀xA ↔ ∃x(¬A)).

Know: ∃n(¬(3n+ 2 is odd → n is odd)).

Goal: F.

3. Now use the tautology that ¬(p→ q) ↔ p ∧ ¬q).

Know: ∃n(3n+ 2 is odd ∧ n is even).

Goal: F.

4. Ask somebody else to select an integer n such that 3n + 2 is odd and
n is even.

Known variables: n

Know: 3n+ 2 is odd.

Know: n is even.

Goal: F.
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5. By the definition of an even integer, saying that n is even is equivalent
to saying that there exists an integer m such that n = 2m. (Existential
information is useful because it allows you to get something in hand,
as is done in the next step. So you often want to exploit existential
information.)

Known variables: n

Know: 3n+ 2 is odd.

Know: ∃m(n = 2m).

Goal: F.

6. Since we know that an integer m exists such that n = 2m, we can ask
somebody else to give us such an m. Let’s do that.

Known variables: n, m

Know: 3n+ 2 is odd.

Know: n = 2m.

Goal: F.

7. Since we know that n = 2m, it seems reasonable to substitute 2m for
n in expression 3n+ 2 to see what we get. Doing that gives

3n+ 2 = 3(2m) + 2 = 6m+ 2 = 2(3m+ 1).

So 3n+ 2 is even. Recording that:

Known variables: n, m

Know: 3n+ 2 is odd.

Know: n = 2m.

Know: 3n+ 2 is even.

Goal: F.

8. But 3n + 2 cannot be both even and odd. Formula (3n + 2 is odd ∧
3n+ 2 is even) is equivalent to F. So we have concluded that F is true
and we are done.

♦
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Typical Proof. By contradiction. Assume there exists an n such that 3n+2
is odd but n even. Since n is even, there exists an integer m so that n = 2m.
So

3n+ 2 = 3(2m) + 2 = 6m+ 2 = 2(3m+ 1).

That means 3n+ 2 is even, contradicting the assumption that 3n+ 2 is odd.

♦

3.11 Proving ∀x(∃y(A))

It is common to encounter theorems whose general form is ∀x(∃yP (x, y)).
The proof usually involves finding an algorithm. For any x, the algorithm
must find a y so that P (x, y) is true. Here is an example.

Example Theorem 3.11. For all real numbers x and y, if x and y are both
rational numbers then x+ y is also a rational number.

Detailed Proof.

1. Ask someone else to select arbitrary real numbers of x and y.

Known variables: x, y

Goal: If x and y are rational then x+ y is rational.

2. Assume that x and y are rational.

Known variables: x, y

Know: x is rational.

Know: y is rational.

Goal: x+ y is rational.

3. Our knowledge involves the term rational. We need to know what
that means. From the definition of a rational number, there must exist
integers a and b where b 6= 0 and x = a/b; and there must exist integers
c and d where d 6= 0 and y = c/d. (Notice that different names are
chosen for different things.)
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Known variables: x, y, a, b, c, d

Know: a, b, c and d are integers.

Know: b 6= 0.

Know: d 6= 0.

Know: x = a/b.

Know: y = c/d.

Goal: x+ y is rational.

4. Since the goal is to show that x + y is rational, let’s replace x by a/b
and replace y by c/d in expression x+ y. Since b and d are nonzero,

x+ y = a/b+ c/d = ad/bd+ bc/bd = (ad+ bc)/bd.

Known variables: x, y, a, b, c, d

Know: a, b, c and d are integers.

Know: b 6= 0.

Know: d 6= 0.

Know: x = a/b.

Know: y = c/d.

Know: x+ y = (ad+ bc)/bd.

Goal: x+ y is rational.

5. But we have shown that x + y is the ratio of integers ad + bc and bd.
Since neither b nor d is 0, bd cannot be 0. So x + y is rational, by the
definition of a rational number.

The algorithm that has been employed here is for adding two fractions.

♦

Typical Proof. Let x and y be arbitrary rational numbers. By the definition
of a rational number, there exists integers a, b, c and d (b 6= 0 and d 6= 0)
such that x = a/b and y = c/d. Then

x+ y = a/b+ c/d = ad/bd+ bc/bd = (ad+ bc)/bd.

Since x + y is the ratio of two integers, x + y is rational. (You can observe
that bd 6= 0 since the product of two nonzero numbers is nonzero.)
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3.12 Proving (A If and Only If B)

There are two commonly used ways of proving A↔B.

3.12.1 Using Direct Equivalences

You can treat ↔ in a way similar to the way you treat = in algebraic equa-
tions, performing equivalence-preserving manipulations. Let’s use that ap-
proach to prove the law of the contrapositive.

Example Theorem 3.12. p→ q ↔ ¬q → ¬p.
Proof.

¬q → ¬p ↔ ¬(¬q) ∨ ¬p (defn of →)

↔ q ∨ ¬p (double negation)

↔ ¬p ∨ q (commutative law of ∨)

↔ p→ q (defn of →)

3.12.2 Proving Two Implications

Sometimes it is preferable to use the fact that A↔B, is equivalent to (A→
B) ∧ (B → A) and to prove A→ B and B → A separately.

Example Theorem 3.13. For every integer n, n is odd if and only if n2 is
odd.

Detailed Proof.

1. It suffices to prove

∀n((n is odd → n2 is odd) ∧ (n2 is odd → n is odd)).

That gives two goals. We use tautology ∀x(A ∧ B) ↔ (∀xA ∧ ∀xB)
and change the variable names so that we can look at the two parts
separately without variables from one interfering with the other.

Goal (1): ∀n(n is odd → n2 is odd).

Goal (2): ∀m(m2 is odd → m is odd).
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2. Ask someone else to choose arbitrary values of m and n.

Known variables: n, m

Goal (1): n is odd → n2 is odd.

Goal (2): m2 is odd → m is odd.

3. Goal (2) is equivalent to its contrapositive, m is even → m2 is even.
We proved that as Theorem 3.1. That only leaves Goal (1). (We still
know goal (2), of course, but we can always discard known information
to simplify.)

Known variables: n

Goal (1): n is odd → n2 is odd.

4. To prove Goal (1), assume that n is odd.

Known variables: n

Know: n is odd.

Goal (1): n2 is odd.

5. Since n is odd, there exists an integer k so that n = 2k + 1.

Known variables: n

Know: ∃k(n = 2k + 1).

Goal (1): n2 is odd.

6. Ask someone else to provide a value k such that n = 2k + 1.

Known variables: n, k

Know: n = 2k + 1.

Goal (1): n2 is odd.

7. Since n = 2k + 1,

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Since n2 = 2z + 1 for z = 2k2 + 2k, it is evident that n2 is odd.
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♦

Typical Proof.

(a) (n is odd → n2 is odd) Assume that n is odd. By the definition of an
odd integer, there is an integer k such that n = 2k + 1. So

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

By the definition of an odd integer, n2 is odd.

(b) (n2 is odd → n is odd) This is equivalent to (n is even → n2 is even),
which we profed earlier as Theorem 3.1.

♦

3.13 Proof by Cases

Proof by cases involves proving two or more statements. You must be careful
that assumptions made during one of those cases are not still in place when
proving another one. Think of this is similar to calling a function in a pro-
gram. Each time a function is called, a new frame is created, so that calling
f(3) does not interfere with a later call to f(4).

Example Theorem 3.14. For every integer n, n2 ≥ n.

Detailed Proof.

1. Ask someone to select an arbitrary integer n.

Known variables: n

Know: n is an integer

Goal: n2 ≥ n.

2. Let’s break proving the goal into three cases: n = 0, n > 0 and n < 0.
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Known variables: n

Know: n is an integer

Goal (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

3. Goal (1) is clearly true since 02 ≥ 0. Let’s record it among the known
facts.

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

4. Goal (2) is an implication, so we should assume that n > 0 and prove
that n2 ≥ n. But let’s prove that as a separate subproof. Knowledge
and goals that are local to the proof of goal (2) are numbered 2.1, 2.2,
etc., and they can only be used to establish goal (2).

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

Know (2.1): n > 0

Goal (2.1): n2 ≥ n

5. Since n > 0 is an integer, it must be the case that n ≥ 1.
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Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

Know (2.1): n ≥ 1

Goal (2.1): n2 ≥ n

Multiplying both sides of fact (2.1) by n preserves the inequality be-
cause n > 0. That gives n · n ≥ n · 1, or equivalently, n2 ≥ n.

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Goal (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

Know (2.1): n ≥ 1

Know (2.2): n2 ≥ n

Goal (2.1): n2 ≥ n

6. We have succeeded in proving goal (2). Notice that fact (2.2) cannot
be used to establish goal (4) since it depends on the assumption that
n > 0.

We can move goal (2) into our knowledge. But we must also throw out
parts that were local to the proof of goal (2).

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Know (2): n > 0→ n2 ≥ n.

Goal (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.
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7. Now we need to prove goal (3). Assume that n < 0. But the square
of any number is nonnegative. It follows that n2 ≥ 0 > n when n < 0,
and we can move goal (3) into what we know.

Known variables: n

Know: n is an integer

Know (1): n = 0→ n2 ≥ n.

Know (2): n > 0→ n2 ≥ n.

Know (3): n < 0→ n2 ≥ n.

Goal (4): n2 ≥ n.

8. Propositional formula

(p→ s) ∧ (q → s) ∧ (r → s) ∧ (p ∨ q ∨ r))→ s

is a tautology. That means known facts (1), (2) and (3) imply goal (4).

♦

Typical Proof. The proof is by cases (n = 0, n > 0 and n < 0).

Case 1 (n = 0). Then n2 ≥ n because 02 ≥ 0.

Case 2 (n > 0). The smallest positive integer is 1, so n > 0 implies n ≥ 1.
Multiplying both sides of inequality n ≥ 1 by positive number n gives n2 ≥ n.

Case 3 (n < 0). n2 ≥ 0 for all numbers n. Since, in this case, n is negative,
clearly n2 ≥ n.

♦
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4 Mathematical Foundations

4.1 Sets

You should have seen sets before. This is review.

Additional reading: Cummings Chapter 3 about sets and reasoning about
sets.

Definition 4.1. A set is an unordered collection of things without repeti-
tions. The things in set S are called the members of S.

Definition 4.2. A set enumeration is one way to describe a set, by writing
the members of the set in braces, separated by commas. For example, {2, 5,
9} is a set of three integers.

4.1.1 Finite and Infinite Sets

It is possible to list the members of a finite set. But some sets, such as the
set of all positive integers, have infinitely many members. Here are a few
common infinite sets.

N {0, 1, 2, 3, . . . }

Z {. . . , −2, −1, 0, 1, 2, . . . }

R the set of all real numbers

Note. Mathematicians usually define N to be the set of all positive integers,
and that is what Cummings does. Computer scientists usually define N to
be the set of nonnegative integers because 0 is so important to computer
programs. I will use the definition above, including 0.

4.1.2 Set Comprehensions

A set comprehension is a way to describe the set of all values that have a
certain property. Notation

{x | p(x)}
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stands for the set of all values x such that p(x) is true and notation

{f(x) | p(x)}

stands for the set of all values f(x) such that p(x) is true. Notation

{x ∈ S | p(x)}

is shorthand for {x | x ∈ S ∧ p(x)} Here are some examples.

Set Description

{x | x ∈ R ∧ x2 − 2x+ 1 = 0} {−1, 1}

{x ∈ R | x2 − 2x+ 1 = 0} {−1, 1}

{x | x is an even positive integer} {2, 4, 6, . . .}

{x2 | x is an even positive integer} {4, 16, 36, . . .}

4.1.3 Set Notation and Operations

Table 4.1 defines notation for sets.

Note. Mathematicians commonly use operator \ to mean set difference, and
that is what Cummings does. That is, Cummings defines S \T to be the set
of all members of S that are not members of T . Computer scientists usually
write S − T for set difference.

4.1.4 Identities for Sets

Table 4.2 lists some identities that are easy to establish.

4.1.5 Sets of Sets

The members of sets can be sets. For example, if S = {{1, 2, 3}, {2, 4, 6}}
then |S| = 2, since S has exactly two members, {1, 2, 3} and {2, 4, 6}.
Do not confuse ∈ with ⊆. If S = {{1, 2, 3}, {2, 4, 6}} then
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Table 4.1

Notation Meaning

|S| The cardinality (size) of S, when S is a finite set.

{} The empty set, which has no members

x ∈ S True if x is a member of set S. For example, 2 ∈ {1, 2, 3, 4}

x 6∈ S ¬(x ∈ S)

S ∪ T {x | x ∈ S ∨ x ∈ T}. For example, {2, 5, 6} ∪ {2, 3, 7} = {2,
3, 5, 6, 7}. This is called the union of sets S and T .

S ∩ T {x | x ∈ S ∧ x ∈ T}. For example, {2, 5, 6} ∪ {2, 3, 7} =
{2}. This is called the intersection of sets S and T .

S − T {x | x ∈ S ∧ x 6∈ T}. For example, {2, 5, 6} − {2, 3, 7} = {5,
6}. This is called the difference of sets S and T .

S U −S, where U is the universe of discourse. This is called the
complement of S.

S × T {(x, y) | x ∈ S∧y ∈ T}. For example, {2, 3}×{5, 6} = {(2,5),
(2,6), (3,5), (3,6)}. This is called the cartesian product of S
and T .

S ⊆ T This is true if ∀x(x ∈ S → x ∈ T ). For example, {2, 4, 6} ⊆
{1, 2, 3, 4, 5, 6}. Notice that {2, 4, 6} ⊆ {2, 4, 6}. S ⊆ T is
read “S is a subset of T .”

S = T S and T are the same set if S ⊆ T and T ⊆ S. That is, S
and T have exactly the same members.
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Table 4.2

Some Set Identities

A ∪ {} = A

A ∩ {} = {}

A = A

A ∪B = B ∪ A

A ∩B = B ∩ A

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

A ∪B = A ∩B

A ∩B = A ∪B

A−B = A ∩B.

A ∪ (A ∩B) = A

A ∩ (A ∪B) = A
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{1, 2, 3} ∈ S
{1, 2, 3} 6⊆ S

3 6∈ S

Notice that {} 6= {{}}. |{}| = 0 but |{{}}| = 1 since {{}} has one member,
the empty set.

4.2 Alphabets and Strings

Definition 4.3. An alphabet is a finite, nonempty set whose members we
call symbols .

We will usually want to use small alphabets such as {a, b} or {a, b, c}, where
symbols a, b and c stand for themselves (letters of an alphabet).

It is conventional to call an alphabet Σ (upper case Greek letter sigma,
indicating symbol).

Definition 4.4. If Σ is an alphabet, then a string over Σ is a finite sequence
members of Σ. (In a sequence, order matters and there can be repetitions.)
A string can have length 0.

I will write strings in double-quotes. For example, if Σ = {a, b, c} then "aab"
and "ccccc" are two strings over Σ.

A fundamental operations on strings is concatenation, where s · t indicates s
followed by t. For example, "abc" ·"aba" = "abcaba". Just as the multiplica-
tion symbol is usually unwritten between numbers, we will usually omit the
concatenation dot between strings and write st to mean s · t.
We will allow concatenation to work with symbols as well as strings. For
example, "aab" · a = "aaba".

When the alphabet is understood or unimportant, we talk about a string ,
leaving the alphabet unstated.

Definition 4.5. If s is a string, then |s| is the length of s (the number of
characters in s). For example, |"accb"| = 4 and |"b"| = 1.

Definition 4.6. We write ε to mean the empty string, "", whose length is
0. (Symbol ε is a variant of Greek letter epsilon. Think of it as e for empty.)
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4.2.1 Sets of Strings

Definition 4.7. A set of strings is called a language.

Definition 4.8. If Σ is an alphabet, then Σ∗ is the set of all strings over Σ.
For example, {a, b}∗ = {ε, "a", "b", "aa", "ab", "ba", "bb", "aaa", . . . }.

4.2.2 Natural Numbers as Strings

We will use strings as the inputs and outputs of algorithms or programs. But
sometimes, we want the inputs and outputs to be integers. That is easy to
manage: we write the integers in standard (base 10) notation as strings. For
example, 25 is treated as string is "25".

4.3 Functions

You should have seen functions before. This is review.

Definition 4.9. If A and B are sets, then a function with domain A and
codomain B associates exactly one value in set B with each value in set A.
We write f : A → B to mean that f is a function with domain A and
codomain B.

Definition 4.10. If f : A→ B and x ∈ A, then notation f(x) indicates the
member of B that f associates with x. When f(x) = y, we say that f maps
x to y.

For example, suppose that f : N → N is defined by f(x) = x2. Then f(3)
= 9 and f(5) = 25.

4.4 Computational Problems

We will look at two kinds of computational problems.

1. A decision problem is a problem where the input is a string (over a
chosen input alphabet) and the output is either 1 (true) or 0 (false).
We can also think of the output as yes or no.
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A decision problem can be expressed as a function or as a set of strings
(a language). When S is a set of strings, we think of S as the decision
problem:

Input. String x over the input alphabet.

Question. Is x ∈ S?

Most of the problems that we look at will be decision problems.

2. A functional problem is a problem where the input is a string (over the
input alphabet) and the output is a string (over the output alphabet).

4.5 Types

We will deal with several different types of things. It is essential that you
know what type of thing each of your variables (or, in general, names) is.

Adjectives or other terms that we define can only be applied to certain types
of things. For example, it makes sense to talk about the cardinality of a set,
but not the cardinality of a number. The following is a list of some of the
types of things that we will use.

Type Meaning

boolean A boolean value is either true or false. It might
equally well be either 1 or 0, or either yes or no.

symbol A symbol is a member of some alphabet.

string A string is a (possibly empty) finite sequence of
symbols

language A language is a set of strings. We can think of a
language as a decision problem.

function Our functions will usually either take a string and
yield a boolean value or will take a string and yield
a string.

set of languages A set of languages is called a class . We think of a
language as a decision problem, and we will iden-
tify classes of decision problems that can be solved
in particular ways.
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5 Finite-State Machines and Regular Languages

This section looks at a simple model of computation for solving decision
problems: a finite-state machine. A finite-state machine is also called a
finite-state automaton (ah-TOM-a-tawn, plural automata), and the finite-
state machines that we look at here are called deterministic finite automata,
or DFAs.

Finite-state machines of a variety of flavors occur in other settings. For
example, the processor that is at the heart of a computer is modeled as a
finite-state machine. Compilers for programming languages use finite-state
machines in their design.

BIG IDEA: We can define a model of computation, finite-state machines,
in a precise and economical way.

5.1 Intuitive Idea of a DFA

Figure 5.1 shows a diagram, called a transition diagram, of DFA M1. Each
circle or double-circle is called a state. One of the states, marked by an arrow,
is called the start state. A state with a double circle is called an accepting
state and a state with a single circle is called a rejecting state.

The arrows between states are called transitions , and each transition is la-
beled by a member of the DFA’s alphabet Σ (set {a, b} for M1).

Important. For each state q and each member c of Σ, there must be exactly
one transition going out of q labeled c.

Figure 5.1. Transition diagram of DFA M1 that recognizes language
{s ∈ {a, b}∗ | s has an even number of a’s}. There are two states. State 1
is the start state. State 1 is an accepting state and state 2 is a rejecting
state.
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Figure 5.2. Transition diagram of DFA M2, which accepts strings whose
length is divisible by 3.

Figure 5.3. Transition diagram of DFA M3, which rejects all strings.

A DFA is used to recognize a language (a decision problem). To “run” a
DFA on string s, start in the start state. Read each character, and follow
the transition labeled by that character to the next state. On input "aabab",
M1 starts in state 1, then hits states 1, 1, 2, 2, 1, ending in state 1.

The end state determines whether the DFA accepts or rejects the string.
Since state 1 is an accepting state, M1 accepts "aabab". It should be easy
to see that M1 accepts strings with an even number of b’s and rejects strings
with an odd number of b’s.

A DFA M with alphabet Σ recognizes the set

L(M) = {s | s ∈ Σ∗ and M accepts s}.

For example, L(M1) = {s | s ∈ {a, b}∗ and s has an even number of b’s}.
Figures 5.2 and 5.3 show two finite-state machines M2 and M3 with alphabet
{a, b} where

L(M2) = {s | |s| is divisible by 3}
L(M3) = {}
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5.2 Designing DFAs

BIG IDEA: A finite-state machine is best understood in terms of the set
of strings that reach each state.

There is a simple and versatile way to design a DFA to recognize a selected
language L. Associate with each state q the set of strings Set(q) that end on
state q. For example, in machine M2,

Set(0) = {s | |s| ≡ 0 (mod 3)}
Set(1) = {s | |s| ≡ 1 (mod 3)}
Set(2) = {s | |s| ≡ 2 (mod 3)}

Your goals in designing a DFA that recognizes language L are:

(a) Start by deciding what the states will be and what Set(q) will be for
each state. Make sure that, for each state q, either Set(q) ⊆ L (so
that q is an accepting state) or Set(q) ⊆ L, (so that q is a rejecting
state).

(b) Draw transitions so that, if x ∈ Set(q) and there is a transition from
state q to state q′ labeled a, then x · a ∈ Set(q′).

5.2.1 Example: Even Binary Numbers

Figure 5.4 shows a DFA with alphabet {0,1} that accepts all even binary
numbers. For example, it accepts "10010" and rejects "1101". Set(0) =
{s ∈ {0, 1}∗ | s is an even binary number} and Set(1) = {s ∈ {0, 1}∗ | s is
an odd binary number}. The transitions are obvious: adding a 0 to the end
of any binary number makes the number even, and adding a 1 to the end
makes the number odd.

5.2.2 A DFA Recognizing Binary Numbers that are Divisible by
3

Figure 5.5 shows a DFA that recognizes binary numbers that are divisible
by 3. For example, it accepts "1001" and "1100", since "1001" is the binary
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Figure 5.4. A DFA that recognizes even binary numbers. An empty
string is treated as 0.

representation of 9 and "1100" is the binary represention of 12. But it rejects
"100", the binary representation of 4.

Thinking of binary strings as representing numbers,

Set(0) = {n | n ≡ 0 (mod 3)}
Set(1) = {n | n ≡ 1 (mod 3)}
Set(2) = {n | n ≡ 2 (mod 3)}

Suppose that m is a binary number that is divisible by 3. Adding a 0 to the
end doubles the number, so m · 0 is also divisible by 3. (Adding 0 to then
end of "1001" (910) yields "10010" (1810).) Adding a 1 to m doubles m and
adds 1. But modular arithmetic tells us that

m ≡ 0 (mod 3) → 2m ≡ 0 (mod 3)

→ 2m+ 1 ≡ 1 (mod 3)

so there is a transition from state 0 to state 1 on symbol 1. You can work
out the other transitions.

Figure 5.5. A DFA recognizing binary numbers that are divisible by 3.
An empty string is treated as 0.
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Figure 5.6. A DFA recognizing strings of a’s and b’s with at least two
a’s and at most one b.

5.2.3 Strings Containing at Least Two a’s and at Most One b.

Figure 5.6 shows a DFA that regognizes language

{w ∈ {a, b}∗ | w contains at least two a’s and at most one b}.

The idea is to keep track of the number of a’s (up to a maximum of 2) and
the number of bs (up to a maximum of 2). That suggests that we need nine
states: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) and (2, 2), where
the first number is the count of a’s and the second the count of b’s, and 2
means at least 2. The accepting states and transitions should be obvious.

5.3 Definition of a DFA and the Class of Regular Lan-
guages

The introduction above only shows transition diagrams, and does not ade-
quately say exactly what a DFA is and how to determine the language that it
recognizes. This section corrects that with a careful definition of both. The
first definition says what a DFA is without saying what it means to run that
machine on a string. It is, in a sense, just the syntax of a DFA.
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5.3.1 Definition of a DFA

Definition 5.1. A deterministic finite-state machine is a 5-tuple (Σ, Q, q0,
F , δ). That is, the DFA is described by those five parts.

• Σ is the machine’s alphabet.

• Q is a finite nonempty set whose members are called states .

• q0 ∈ Q is called the start state.

• F ⊆ Q is the set of accepting states . (All members of Q−F are rejecting
states .)

• δ : Q× Σ→ Q is called the transition function.

From state q, if you read symbol a, you go to state δ(q, a). Notice that,
because δ is a function, there must be exactly one state to go to from state
q upon reading symbol a.

5.3.2 When Does DFA M Accept String s?

Consider a DFA M = (Σ, Q, q0, F , δ).

Definition 5.2. If q ∈ Q and x ∈ Σ∗, then q : x is defined inductively as
follows.

1. q : ε= q.

2. If x = cy where c ∈ Σ and y ∈ Σ∗ then q : x = δ(q, c) : y.

The idea is that q : x is the state that M reaches if it starts in state q and
reads string x.

Every DFA M has a language L(M) that it recognizes, and the following
definition says what that is.

Definition 5.3. L(M) = {x ∈ Σ∗ | q0 : x ∈ F}.
That is, M accepts string x if M reaches an accepting state when it is run
on x starting in the start state, q0.
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5.3.3 The Class of Regular Languages

Definition 5.4. Language A is regular if there exists a DFA M such that
L(M) = A.

We have see a few regular languages above, including {} and the set of binary
numbers that are divisible by 3.

5.4 A Theorem about q : x

Notation q : x satisfies a certain kind of associativity.

Theorem 5.5. (q : x) : y = q : (xy).

Proof. The proof is by induction of the length of x. Read Cummings, Chap-
ter 4 for a review of mathematical induction. It suffices to

(a) show that (q : x) : y = q : (xy) for all q and y when |x| = 0, and

(b) show that (q : x) : y = q : (xy) for an arbitrary nonempty string x, un-
der the assumption (called the induction hypothesis) that (r : z) : y =
r : (zy) for any state r, string y and string z that is shorter than x.

Case 1 (|x| = 0). That is, x = ε. By definition, q : ε = q. So

(q : x) : y = q : y

= q : (xy)

because, when x = ε, xy = y.

Case 2 (|x| > 0). A nonempty string x can be broken into x = cz where c
is the first symbol of x and z is the rest.

(q : x) : y = (q : (cz)) : y

= (δ(q, c) : z) : y by the definition of q : (cz)

= δ(q, c) : (zy) by the induction hypothesis

= q : (czy) by the definition of q : (czy)

= q : (xy) since x = cz

47



5.5 Closure Results

A closure result tells you that a certain operation does not take you out of a
certain set. For example, Z is closed under addition because the sum of two
integers is an integer. Z is also closed under multiplication. But Z is not
closed under division, since 1/2 is not an integer.

The class of regular languages possesses some useful closure results.

Definition 5.6. Suppose that A ⊆ Σ∗ is a language. The complement A of
A is Σ∗ − A.

Theorem 5.7. The class of regular languages is closed under complemen-
tation. That is, if A is a regular language then A is also a regular lan-
guage. Put another way, for every DFA M , there is another DFA M ′ where
L(M ′) = L(M). Moreover, there is an algorithm that, given M , finds M ′.
That is, the proof is constructive.

Proof. Suppose that M = (Σ, Q, q0, F, δ). Then M ′ = (Σ, Q, q0, Q − F, δ).
That is, simply convert each accepting state to a rejecting state and each
rejecting state to an accepting state.

♦

Theorem 5.8. The class of regular languages is closed under intersection.
That is, if A and B are regular languages then A∩B is also a regular language.
Put another way, suppose M1 and M2 are DFAs with the same alphabet Σ.
There is a DFA M ′ so that L(M ′) = L(M1) ∩ L(M2). That is, M ′ accepts
x if and only if both M1 and M2 accept x. Moreover, there is an algorithm
that takes parameters M1 and M2 and produces M ′.

Proof. The idea is to make M ′ simulate M1 and M2 at the same time. For
that, we want a state of M ′ to be an ordered pair holding a state of M1 and
a state M2. Recall that the cross product A × B of two sets A and B is
{(a, b) | a ∈ A ∧ b ∈ B}.
Suppose that M1 = (Σ, Q1, q0,1, F1, δ1). and M2 = (Σ, Q2, q0,2, F2, δ2). Then
M ′ = (Σ, Q′, q′0, F

′, δ′) where

Q′ = Q1 ×Q2

q′0 = (q0,1, q0,2)
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F ′ = F1 × F2

δ′((r, s), a) = (δ1(r, a), δ2(s, a))

State (r, s) of M ′ indicates that M1 is in state r and M2 is in state s. Transi-
tion function δ′ runs M1 and M2 each one step separately. Notice that the set
F ′ of accepting states of M ′ contains all states (r, s) where r is an accepting
state of M1 and s is an accepting state of M2. So M ′ accepts x if and only
if both M1 and M2 accept x.

♦

Theorem 5.9. The class of regular languages is closed under union. That
is, if A and B are regular languages then A ∪B is also a regular language.

Proof. By DeMorgan’s laws for sets,

A ∪B = A ∩B.

But we already know that the class of regular languages is closed under
complementation and intersection.

♦
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6 Nonregular Languages

In this section we see how to prove that a language is not regular.

BIG IDEA: You can prove a negative.

6.1 A Motivating Example

Notation an means a string of n consecutive a’s. For example, a1 = "a", a2

= "aa" and a3 = "aaa". It is easy to design a finite-state machine that solves
language

L1 = {ambn | m > 0 and n > 0}.

A string s is in L1 if and only if s consists of some positive number of a’s
followed by a positive number of b’s. But suppose that

L2 = {anbn | n > 0}.

Notice that a string s is in L2 if and only if s consists of some positive number
of a’s followed by the same number of b’s. L2 = {"ab", "aabb", "aaabbb",
. . . }.
Suppose that you want to design a finite state machine M where L(M) = L2.
What information does M need to remember? What if M reads a string of
n a’s and the next symbol is a b? M must remember n. If it doesn’t, then
how will M be able to check whether there are exactly n b’s?

So it seems that M must have a state remembering that it has read exactly
1 a, another state remembering that it has read exactly 2 a’s, another re-
membering that it has read exactly 3 a’s, etc., without any limit. But that
requires infinitely many states!

Can we conclude that L2 is not regular? Be careful! Many incorrect “proofs”
have been proposed that follow the rough outline: “I can only see one way
to solve this problem. That way does not work. Therefore, this problem is
unsolvable.” That is nonsense. What if you missed an idea? We need a more
careful proof.
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6.2 A Proof Technique

The above idea about why L2 is not regular is sound, but it needs to be pre-
sented more carefully. This section illustrates a way to show that a language
is not regular (if it really isn’t regular), using language L2 as an example.

Theorem 6.1. L2 is not regular.

Proof.

1. The proof is by contradiction. Suppose that L2 is regular. We need to
derive a contradiction by proving that F is true.

Know: L2 is regular.

Goal: F.

2. Our knowlede uses term regular. By definition, L2 is regular if an only
if there is a DFA M where L(M) = L2.

Know: There exists a DFA M where L(M) = L2.

Goal: F.

3. When you know that there exists something with a particular property,
ask someone else to give you such a thing. So let’s ask for M , and
suppose the start state of M is q0.

Known variables: M , q0

Know: L(M) = L2.

Know: q0 is the start state of M .

Goal: F.

4. This kind of proof involves a clever idea, and here it is. Our intuitive
reasoning above looked at the state that M reaches after reading each
of a1, a2, a3, etc. So let’s think about those states. In fact, since we
have M in hand, we can do an experiment where we run M on each of
a1, a2, a3, a4, etc. For each one, let’s write the state that M reaches.
That gives a table that might start out looking like this.
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Input x State q0 : x reached

"a" 2

"aa" 6

"aaa" 3

"aaaa" 9

. . . . . .

But M only has finitely many states. By the pigeonhole principle, as
you expand the table for longer and longer strings of a’s, there must
come a point where a state is repeated. Suppose that strings ai and ak

take M to the same state q, where i < k.

Input x State q0 : x reached

. . . . . .

ai q

. . . . . .

ak q

. . . . . .

The experiment shows that q0 : ai = q0 : ak = q.

Known variables: M , q0, q, i, k

Know: L(M) = L2.

Know: q0 is the start state of M .

Know: q0 : ai = q.

Know: q0 : ak = q.

Know: i < k.

Goal: F.

5. Now comes a second clever trick. We have seen that M forgets the
difference between ai and ak, since the only thing M can remember
is the state that it is in. What if i b’s come next? On input aibi, M
should answer yes. But on input akbi, M should answer no.
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Define q′ = q : bi. Recalling that q = q0 : ai and q = q0 : ak,

q′ = q : bi

= (q0 : ai) : bi

= q0 : aibi (by Theorem 5.5)

q′ = q : bi

= (q0 : ak) : bi

= q0 : akbi (by Theorem 5.5)

So M reaches the same state q′ on input aibi as on input akbi.

Suppose that q′ is an accepting state. Then M correctly accepts aibi

but incorrectly accepts akbi.

Suppose that q′ is a rejecting state. Then M correctly rejects akbi but
incorrectly rejects aibi.

No matter what, M does not correctly solve language L2.

Known variables: M

Know: L(M) = L2.

Know: L(M) 6= L2.

Goal: F.

6. That gives us the contradiction: (L(M) = L2)∧ (L(M) 6= L2) is equiv-
alent to F.

♦

The above proof is actually quite constructive. Suppose that Archibald says
he can produce a DFA M that solves L2. Ask Archibald to give you M .
Perform the above experiment. You find a string on which M gets the wrong
answer. Sending that string to Archibald provides him with an irrefutable
reason to believe that he was mistaken, and that M does not solve L2.
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6.3 Another Example

Suppose
L3 = {an | n is a perfect square}.

Theorem 6.2. L3 is not regular.

Proof.

1. The proof is by contradiction. Suppose that L3 is regular. We need to
derive a contradiction by proving that F is true.

Know: L3 is regular.

Goal: F.

2. By definition, L3 is regular if an only if there is a DFA M where L(M) =
L3.

Know: There exists a DFA M where L(M) = L3.

Goal: F.

3. Ask someone else to give you a DFA M where L(M) = L3. Suppose
the start state of M is q0.

Known variables: M , q0

Know: L(M) = L3.

Know: q0 is the start state of M .

Goal: F.

4. To employ the first clever idea, we need to find an infinite sequence of
strings to try M on. The requirement is that M cannot afford to forget
the difference between any two of those infinitely many strings; it needs
to stop in a different state for each of them. Finding that sequence is
the part of this kind of proof that requires the most thought.

A sequence of strings that does the job is a1, a4, a9, a16, etc.; that is,
run M on sequences of a’s of lengths 12, 22, 32, 42, etc. We have M in
hand, and we can do an experiment where we run M on each of those
strings. The table might start out looking like this.
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Input x State q0 : x reached

a1
2

8

a2
2

1

a3
2

14

a4
2

6

. . . . . .

Since M only has finitely many states, but there are infinitely many
strings in the sequence, the right-hand column must eventually contain
a repetition. Suppose that inputs ai

2
and ak

2
stop on the same state,

q.

Input x State q0 : x reached

. . . . . .

ai
2

q

. . . . . .

ak
2

q

. . . . . .

Known variables: M , q0, q, i, k

Know: L(M) = L2.

Know: q0 is the start state of M .

Know: q0 : ai
2

= q.

Know: q0 : ak
2

= q.

Know: i < k.

Goal: F.

5. For the second clever trick, we must show that the first clever trick was
chosen correctly. We have seen that M forgets the difference between
ai

2
and ak

2
, since the only thing M can remember is the state that it

is in. Our goal is to find one string r where M should accept ai
2
r but
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M should reject ak
2
r. A string r that does the job is r = a2i+1. Notice

that

ai
2

r = ai
2

a2i+1

= ai
2+2i+1

= a(i+1)2

So ai
2
r ∈ L3. But

ak
2

r = ak
2

a2i+1

= ak
2+2i+1

But i < k, so

k2 < k2 + 2i+ 1

< k2 + 2k + 1

= (k + 1)2

Since there are no perfect squares between k2 and (k+ 1)2, k2 + 2i+ 1
cannot be a perfect square. That means ak

2
r 6∈ L3.

Recall that M stops in the same state, q, on input ai
2

as on input ak
2
.

Therefore, it stops on the same state q′ = q : r on input ai
2
r as on input

ak
2
r.

If q′ is an accepting state, then M correctly accepts ai
2
r but incorrectly

accepts ak
2
r.

If q′ is an rejecting state, then M correctly rejects ak
2
r but incorrectly

rejects ai
2
r.

No matter what, there is an input on which M gives the wrong answer.
So L(M) 6= L3.

Known variables: M

Know: L(M) = L3.

Know: L(M) 6= L3.

Goal: F.
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6. That gives us the contradiction: (L(M) = L3)∧ (L(M) 6= L3) is equiv-
alent to F.

♦

6.4 Yet Another Example

Suppose
L4 = {ww | w ∈ {a, b}∗}.

Strings in L4 include "aa", "abab", "aabbbaabbb" and "bbaabbaa", among
infinitely many others.

Theorem 6.3. L4 is not regular.

Proof.

1. As before, the proof is by contradiction. Suppose that L4 is regular.
We need to derive a contradiction by proving that F is true.

Know: L4 is regular.

Goal: F.

2. By definition, L4 is regular if an only if there is a DFA M where L(M) =
L4.

Know: There exists a DFA M where L(M) = L4.

Goal: F.

3. Ask someone else to provide us with a DFA M where L(M) = L4.
Suppose the start state of M is q0.

Known variables: M , q0

Know: L(M) = L4.

Know: q0 is the start state of M .

Goal: F.
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4. We need to find an infinite sequence of strings to try M on, where M
cannot afford to forget the difference between any two of those strings.
A sequence that works is a1b, a2b, a3b, etc. Let’s try running M on
those strings and write down the state that M reaches for each of them.
The experiment might yield the following.

Input x State q0 : x reached

"ab" 1

"aab" 2

"aaab" 3

"aaaab" 4

. . . . . .

But M only has finitely many states. As you expand the table for
longer and longer strings, there must come a point where a state is
repeated. Suppose that strings aib and akb take M to the same state
q.

Input x State q0 : x reached

. . . . . .

aib q

. . . . . .

akb q

. . . . . .

The experiment shows that q0 : aib = q0 : akb = q.

Known variables: M , q0, q, i, k

Know: L(M) = L4.

Know: q0 is the start state of M .

Know: q0 : aib = q.

Know: q0 : akb = q.

Know: i < k.

Goal: F.
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5. M forgets the difference between aib and akb, since the only thing M
can remember is the state that it is in. What if string r = aib comes
next? On input aibaib, M should answer yes, since aibaib = ww where
w = aib. But on input akbaib, M should answer no, since there does
not exist any string w where akbaib = ww. But M reaches the same
state q′ = q : r on input aibaib as on input akbaib. If q′ is an accepting
state, then M incorrectly accepts akbaib. If q′ is a rejecting state, then
M incorrectly rejects aibaib. So M does not solve L4.

Known variables: M

Know: L(M) = L4.

Know: L(M) 6= L4.

Goal: F.

6. That gives us the contradiction.

♦
I have done these proofs in with a lot of detail. Here is the the previous proof
done in a more typical way.

Theorem 6.4. L4 is not regular.

Proof. Suppose L4 is regular. Let M by a DFA that solves L4.

Imagine doing an experiment where you run M on strings a1b, a2b, a3b, and
so on. Because M has finitely many states, eventually values i and k must
be found, with i < k, where aib and akb take M to the same state q.

Now imagine running M on inputs aibr and akbr where r = aib. Since M
reaches the same state on inputs aib and akb, M must also reach the same
state on inputs aibr and akbr. So M accepts both aibr and akbr or it rejects
both. But that means that M does not solve L4, since aibaib ∈ L and
akbaib 6∈ L. That is a contradiction.

♦

6.5 A Common Mistake

Suppose L5 = {anan | n > 0}. Let’s try to prove the following.
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Claim. L5 is not regular.

“Proof.”

1. The proof is by contradiction. Suppose that L5 is regular. We need to
derive a contradiction by proving that F is true.

Know: L5 is regular.

Goal: F.

2. By definition, L5 is regular if and only if there is a DFA M where
L(M) = L5.

Know: There exists a DFA M where L(M) = L5.

Goal: F.

3. Ask someone else to give such you a DFA M where L(M) = L5, and
suppose the start state of M is q0.

Known variables: M , q0

Know: L(M) = L5.

Know: q0 is the start state of M .

Goal: F.

4. Do an experiment using M . Run M on strings a1, a2, a3, etc. and
record the state reached for each string. Continue until a state q has
been written twice, which must happen because M has finitely many
states.

Input x State q0 : x reached

. . . . . .

ai q

. . . . . .

ak q

. . . . . .
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Known variables: M , q0, q, i, k

Know: L(M) = L2

Know: q0 is the start state of M

Know: q0 : ai = q

Know: q0 : ak = q

Know: i < k

Goal: F

5. Now we need to find a string r so that air ∈ L5 but akr 6∈ L5. Choose
r = ai.

Notice that air = aiai and that is in L5 from the definition of L5.

Notice that akr = akai. But that does not have the form anan so
akr 6∈ L5.

As before, that leads to a contradiction.

♦
But that “proof” cannot be correct. {anan | n > 0} = {a2n | n > 0}. So
L5 is the set of all strings of a’s whose length is even, and that is a regular
language. Where did the proof go wrong?

The incorrect proof states that akai does not have the form anan. Suppose
k = 4 and i = 2. Then akai = a4a2 = a6 = a3a3. In fact, as long as i + k is
even, akai does have the form anan, where n = (i+ k)/2.

Can you insist that i + k is odd? Clearly not. The claim is false. It is
pointless to try to modify the proof since the claim is false.

6.6 Be Careful Not to Be Sloppy

Having seen a few proofs like the above, all using similar ideas, it is easy
to get the idea that it is not necessary to write out all of the details, and
instead to skip directly to step 5. But step 4 says what the experiment is;
that is, what is the infinite sequence of strings to run M on? If you don’t say
what the experiment is, you will find yourself making inconsistent statements
about that experiment.
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There is an easy way to avoid that. Don’t skip the details. Write them down
and check that what you have written is sensible. Look at an example. (We
found that the above incorrect proof was not right by looking at the example
i = 2 and k = 4.)

You don’t need to write out tables of known things and goals, as in our very
detailed proofs. Use the typical (shorter) proof style. But don’t expect a
person who reads your proof to fill in important details, such as the nature
of the experiment, or why one string is in L(M) while the other is not.
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7 Regular Expressions

This section introduces regular expressions. A regular expression describes
a set of strings. We will see that the class of languages that can be decribed
by regular expressions is the same as the class of regular languages (those
languages that can be solved by a finite-state machine).

Regular expressions are of practical value; some programming language li-
braries provide tools for doing searches based on regular expressions. Some
text editors and console command languages similarly provide tools for search-
ing for something that is a member of the set described by a given regular
expression.

7.1 Regular Operations

The regular operations are operations on languages; they take one or more
languages and yield another language, in the same sense that operator +
takes two numbers and yields another number. The first regular operation
is union (A ∪ B), which we have already seen. The remaining two regular
operations are concatenation and Kleene closure.

Definition 7.1. The concatenation A · B of languages A and B is defined
by

A ·B = {xy | x ∈ A and y ∈ B}.

That is, A ·B is the set of all strings that can be formed by writing a member
of A followed by a member of B. For example, {"aa", "ccb"} · {"abc", "bb"}
= {"aaabc", "aabb", "ccbabc", "ccbbb"}.

Definition 7.2. The Kleene closure A∗ of language A is defined by

A∗ = {x1x2 · · ·xn | n ≥ 0 and xi ∈ A for i = 1, . . . , n}.

If A = {"a", "bcb"} then A∗ = {ε, "a", "bcb", "aa", "abcb", "bcba", "bcbbcb",
. . . }. A∗ contains the empty string and all strings that can be formed by
concatenating members of A together. Notice that {}∗ = {ε}.
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Language L is closed under concatenation if, whenever x and y are both in
L, xy is also in L. Another way to define the Kleene closure of A is as the
smallest set of strings that is closed under concatenation and that contains
ε all members of A.

7.2 Regular Expressions

A regular expression e over alphabet Σ is an expression whose value is a
language L(e) over Σ. Regular expressions have the following forms.

1. Symbol ∅ is a regular expression. L(∅) = {}.

2. A symbol a ∈ Σ is a regular expression. L(a) = {"a"}.

3. If A and B are regular expressions, then:

(a) A ∪B is a regular expression. L(A ∪B) = L(A) ∪ L(B).

(b) AB is a regular expression. L(AB) = L(A) · L(B).

(c) A∗ is a regular expression. L(A∗) = L(A)∗.

Conventionally, * has highest precedence, followed by concatenation, with ∪
having lowest precedence. You can use parentheses to override precedence
rules.

We put spaces in some regular expressions to make them more readable.
They don’t affect the meaning.
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7.3 Examples of Regular Expressions

(ab)∗ Any string over alphabet {a, b} that consists of ab
repeated zero or more times. {ε, "ab", "abab",
"ababab", . . . }

a∗b∗ Any string over alphabet {a, b} that consists of
zero or more a’s followed by zero or more b’s: {ε,
"a", "b", "ab", "aab", "aabb", . . . }.

(a ∪ b)∗ All strings over alphabet {a, b}.
(a ∪ b)∗a(a ∪ b) All strings over alphabet {a, b} whose next-to-last

symbol is a.

(a ∪ b)∗aabb(a ∪ b)∗ All strings over alphabet {a, b} that have aabb as
a contiguous substring.

b∗(ab∗a)∗b∗ All strings over alphabet {a, b} that have an even
number of as.

(0 ∪ 1(01∗0)∗1)∗ All binary numbers that are divisible by 3. (This
one is difficult and is not obvious. Look at the DFA
in Figure 5.1.1. Starting in state 0, what can the
DFA read to get it back to state 0? Certainly, it
can read a 0. It can also read a 1, taking it to state
1, then 01∗0 repeated any number of times, then a
1 to get it back to state 0. Those two, getting the
DFA from state 0 back to state 0, can be repeated
any number of times.
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8 Equivalence of Regular Expressions and Finite-

State Machines

BIG IDEA: Sometimes, two very different definitions define the same
thing.

We have defined the class of regular language using DFAs. We have also
defined regular expressions. Finite-state machines and regular expressions
could not be more different from one another. Amazingly, the class of lan-
guages that can be described by regular expressions is exactly the class of
regular languages (the ones solvable by DFAs)! We will demonstrate the
following two lemmas. (A lemma is a theorem that is proved as a step in
proving a more important theorem.)

Lemma 8.1. If e is a regular expression then L(e) is a regular language.

Lemma 8.2. If A is a regular language then there exists a regular expression
e so that L(e) = A.

The following theorem follows immediately from the two lemmas.

Theorem 8.3. Language A is regular (solvable by a DFA) if and only if
there exists a regular expression that describes language A.

Proofs of Lemmas 8.1 and 8.2 are long, and they involve defining new types
of finite-state machines that are of an intermediate nature between regular
expressions and DFAs.

8.1 Nondeterministic Finite-State Machines

Like a DFA, a nondeterministic finite automaton, or NFA, is a 5-tuple (Σ,
Q, q0, F , δN). An NFA differs from a DFA in the following two ways.

1. For each state q and each symbol c ∈ Σ, instead of giving a single
state, the transition function δN(q, c) of gives a set of states that can
be reached from q upon reading symbol c. For example, there can
be several transitions from state 2 to other states, or there can be no
transitions from state 2 to other states.
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2. An NFA accepts string s just when there exists a path from the start
state q0 to an accepting state (a member of F ), where the symbols
along the path are labeled, in sequence, by the symbols in string s.

Figure 8.1 shows the transition diagram of an NFA that accepts all strings
over alphabet {a, b} that end on ab.

8.1.1 The Subset Construction

Theorem 8.4. For every NFA M there is an equivalent DFA M ′. The two
are equivalent in the sense that they accept the same language.

Proof Sketch. The proof is an algorithm, called the subset construction,
that converts an NFA into an equivalent DFA. The idea is simple: make the
DFA keep track of all states that the NFA could possibly be in. So each
state of the DFA is a set of states of the NFA. Here are the main ideas of the
subset construction.

1. If q0 is the start state of the NFA, then the start state of the DFA is
{q0}. That is, the DFA starts out in a state where it can only be in
state q0.

2. A state of the DFA is an accepting state provided it contains at least
one accepting state of the NFA.

3. Suppose that δN is the transition function of the NFA. The DFA has a
transition from set s to set t labeled by symbol c provided

t =
⋃
q∈s

δN(q, c).

Typically, not all of the sets of states are accessible from the start state.
Figure 8.2 shows the DFA that is obtained from the NFA in Figure 8.1 by
the subset construction. Inaccessible states are omitted.

♦
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Figure 8.1. Transition diagram of an NFA that recognizes the set of all
strings over alphabet {a, b} that end on ab. For example, it accepts "ab",
"bbaab" and "aaaaaab".
Notice that there are two transitions out of state 1 labeled by symbol a.
There are no transitions leaving state 3.
To run an NFA, start in state q0 and follow transitions, writing the symbol
of each transition as you follow it. If it is possible to write down string s
and stop at an accepting state, then s is in the language of the NFA.

Figure 8.2. The DFA that is obtained from the NFA in Figure 8.1 using
the subset construction. Each state of the DFA is a set of states of the
NFA.

To build the DFA, start by creating start state {q0}. Then create new
states as they are needed.

For example, this DFA has a transition from state {1,2} to state {1,3}
labeled b because there is a transition in the DFA from 1 to 1 labeled b
and there is also a transition from 2 to 3 labeled b.

68



NFAs with ε-Transitions

An NFA with epsilon-transitions (an NFAε) is like an NFA, but it allows
transitions labeled ε, called ε-transitions. You follow an ε-transition without
reading a symbol.

It is easy to show that ε-transitions are not essential; you can get rid of them.
That is, the following theorem is true. Its proof is left as an exercise. (Just
add new non-epsilon-transitions that allow an NFA to reach all the same
states as a particular NFAε.)

Theorem 8.5. For every NFAε M , there is an equivalent NFA M ′ (without
ε-transitions).

♦

There is an important property of NFAs with ε-transitions. You can convert
any NFAε to an equivalent one with only one accepting state. That is easy!
Just add a new state (to be the sole accepting state), add an epsilon transition
from each accepting state to the new accepting state, and finally make all of
the states except the new accepting state rejecting states.

Converting a Regular Expression to an NFA with ε-
Transitions

Now we are ready to show how to convert a regular expression to a DFA.
The idea is to convert the regular expression to an NFAε, then to convert
that to an ordinary NFA, then to convert the NFA to a DFA using the subset
construction.

Theorem 8.6. For every regular expression, there is an equivalent NFAε.

Proof. The proof is by induction on the length of a regular expression. Refer
to the definition of a regular language in Section 7. A regular expression has
one of five different forms: ∅, c (where c is a symbol), A ∪B, AB and A∗.

It is obvious that there is an NFA for an empty set and for every singleton
set that contains a string of length 1. Also, we already know that the set of
regular language is closed under union; having shown that the languages of
regular expressions A and B are regular, we can conclude that the language
of A ∪B is also regular by that closure result.
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Figure 8.3. The regular languages are closed under concatenation. Sup-
pose A and B are regular languages. Get an NFAε for each of A and
B, and ensure that the NFAε has exactly one accepting state. Build an
NFAε as shown in the above diagram, connecting the NFAε for A with
that for B. (The ε-transition is labeled e.) Make the accepting state of A
nonaccepting, and make only the start state of A be the start state of the
combined machines.

Figure 8.4. The regular languages are closed under Kleene closure. Sup-
pose that A is a regular language. Get an NFAε for A, and assume that
it has exactly one accepting state. Build an NFAε for A∗ as shown in the
diagram above.
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All we need to do is to show that the regular languages are closed under
concatenation and Kleene closure.

1. Suppose that A and B are regular languages. Then the concatenation
AB is also regular. See Figure 8.3.

2. Suppose that A is regular language. Then the Kleene closure A∗ of A
is also regular. See Figure 8.4.

♦

Now we are ready to prove Lemma 8.1.

Lemma 8.1. If e is a regular expression then L(e) is a regular language.

Proof. Convert regular expression e to an NFAε, then to an NFA using
Theorem 8.5, an finally to a DFA using the subset construction.

♦

8.2 Converting a DFA to a Regular Expression

Now that we have shown how to convert a regular expression to an equivalent
DFA (in a few steps), we need to show how to convert a DFA into an equiv-
alent regular expression. For that, we need yet another type of finite-state
machine.

A generalized finite-state machine (a GFA) has each transition labeled by a
regular expression. The idea is that you can follow a transition while reading
any member of the regular expression that labels the transition.

Theorem 8.7. For every DFA M there is an equivalent regular expression
e.

Proof. Start with a DFA. It is a special case of an NFAε that happens not
to have any ε-transitions. Add a new accepting state and ε-transitions from
all former accepting states so that there is exactly one accepting state. An
NFAε is a special case of a GFA, and we start with that GFA. (Replace ε by
regular expression ∅∗.)
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Figure 8.5. Choose a state q to remove that is not the start state and
not the accepting state. First modify the transitions between states u
and v for all pairs of states (u, v) where u 6= q and v 6= q. The left-hand
diagram shows transitions from u to q, q to itself and q to v. The right-
hand diagram shows the new transition from u to v. Notice that the new
regular expression labeling the transition from u to v makes it unnecessary
to go through q.

Transitions must be modified for every pair of states (u, v) where u 6= q
and v 6= q, including the case where u = v.

If there is no transition between any of the shown states, add a transition
labeled ∅ between them. Such a transition can never be taken. If you
prefer, you can think of special modifications to make when some of the
transitions are missing.
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Now the idea is to remove states from the GFA one at a time, but not to
remove the start or accepting state. Figure 8.5 shows how to remove state
q. It is not the most efficient way to do that, but it gets the job done.

Eventually, you reach a GFA that has only two states, a start state and an
accepting state, as shown in Figure 8.6. It is easy to convert that GFA into
a regular expression.

♦
Lemma 8.2. If A is a regular language then there exists a regular expression
e so that L(e) = A.

Proof. That is immediate from Theorem 8.7.

♦

Figure 8.6. The final step in converting a GFA into a regular expression.
The diagram shows the case where there are only two states left. Convert
the GFA shown in the diagram into regular expression A∗B(D∪CA∗B)∗.
That captures all ways of getting from the start state to the accepting
state.
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9 Programs and Computability

9.1 Programs

With this section, we begin to look at what can be computed by general
programs. But what is a general program?

A full definition of a general program is involved and takes us into an area,
automata theory , that we will not explore in this course for lack of time. So
let’s settle for a less-than-rigorous defininition of a program.

Program "{p(x): body}" is a program or function called p that performs
actions indicated by body. In the body, a program says return r to indicate
that the answer is r. Otherwise, the body is written in psuedo-code that you
can imagine has been translated into your favorite programming language.
We use indentation to show program structure.

Technically the input, or parameter, is always a string. But the input might
be an integer, written in base 10. The input might also have more than one
thing encoded in it. For example, input "(25,400)" describes an ordered pair
of integers. So we will allow a program with more than one input, as in
"{q(x, y): . . . }".

Program "{a(x1x2 . . . xn): . . . }" takes a parameter string x = "x1x2 . . . xn";
in the body, xi refers to the i-th character of x.

Some examples are shown later in this section.

9.1.1 A Program Is a String

We write a program in quotes because a program is a string. You create
a program using a text-editor. That point is important for the study of
computability. If there are string constants embedded inside the program,
I will not write \" for the embedded quotes. There should be no confusion
from that.

We refer to program "{p(x): . . . }" a p. Keep in mind that p is both a
program and a string.
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9.2 Computability

9.2.1 Computable Functions

Definition 9.1. For our purposes, an algorithm is a program that stops and
produces an answer for every input. It is not allowed to loop forever, and is
not allowed to stop without giving an answer.

Definition 9.2. Suppose that Σ and Γ are alphabets and f : Σ∗ → Γ∗ is a
function. Program p computes function f provided, for every string s ∈ Σ∗,
when p is run on input s, it eventually stops and returns string f(s).

Definition 9.3. Function f is computable if there exists a program that
computes f .

9.2.2 Computable Decision Problems

Definition 9.4. Suppose A ⊆ Σ∗ is a language over Σ∗. A program p
computes A provided, for every string s ∈ Σ∗, when p is run on input s, it
eventually stops and returns 1 if s ∈ A and returns 0 if s 6∈ A.

If p computes A, we also say that p solves A, p recognizes A and that p
decides A.

Definition 9.5. If p is an algorithm, define L(p) to be the set of all strings
on which program p stops and returns 1. We say that L(p) is the language
that p accepts.

Definition 9.6. Language A is computable provided there exists a program
that computes A. Equivalently, A is computable if there exists a program
p that stops on every input and where L(p) = A. Computable decision
problems are also said to be decidable.

Note that computability is not defined in terms of what you or I are clever
enough to do. A function or language is computable if there exists a program
that computes it, regardless of whether any human is or will ever be able to
find such a program.
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9.2.3 The Church/Turing Thesis

Each programming language is a model of computation. Why can we ignore
details like which programming language is chosen (within some limits) in
the definition of a computable problem? Because every sufficiently general
programming language can solve the same problems, as long as you take
away restrictions on the amount of memory that the program can use. That
observation is captured in the Church/Turing Thesis .

BIG IDEA: The Church/Turing Thesis: the class of computable
problems is the same for all sufficiently general models of computation.

You hardly need much to achieve sufficiently general power. A common
model of computation is a Turing machine, whose memory consists of an
infinitely long tape that can store one symbol per cell, and that can only be
read and written using a head that can move to the left and right over the
tape. That model initially appears to be too simple, but it can solve all of the
computational problems that are solvable by other models of computation.

9.2.4 The “Type” of Adjective Computable

A language can be computable. A function that takes a string and yields
a string can be computable. A function that takes a number and yields a
number can be computable.

But a program cannot be computable. It makes no sense to talk about
a computable program. So please don’t ever to that. Make sure that you
know what type of thing you have.

9.3 Examples of Computable Decision Problems

It is easy to come up with computable decision problems.

Theorem 9.7. The empty set is computable.

Proof. Language {} is thought of as the following decision problem.

Input. String x
Question. Is x ∈ {}?
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Of course, the answer to the question is “no” regardless of what x is, and
program "{e(x): return 0}" computes {}.
♦

Theorem 9.8. Language {"b", "abb", "baba"} is computable.

Proof. The following program t computes language {"b", "abb", "baba"}.

"{t(x):
if x == "b"

return 1
else if x == "abb"

return 1
else if x == "baba"

return 1
else

return 0
}"

♦

You should be able to use the idea in the proof of Theorem 9.8 to prove the
following.

Theorem 9.9. Every finite set is computable.

Theorem 9.10 shows there is a nonregular language that is computable. That
should come as no surprise. General programs have much more power than
finite-state machines.

Theorem 9.10. Language {anbn | n > 0} is computable.

Proof. Suppose that Σ = {a, b}. To compute {anbn | n > 0}, it suffices to
(1) check that there does not occur an a after a b, and (2) count the a’s,
count the b’s, and check that the two counts are the same. The following
program accomplishes that.
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"{p(x1x2 . . . xn):
i = 1
ca = 0
cb = 0
while i ≤ n and xi == ’a’
i = i + 1
ca = ca + 1

while i ≤ n and xi == ’b’
i = i + 1
cb = cb + 1

if i == n+ 1 and ca == cb
return 1

else
return 0

}"

♦

Theorem 9.11. Language {n | n is a prime integer} is computable.

Proof. The following program tells whether n is prime.

"{p(n):
if n < 2

return 0
i = 2
while i < n

if n mod i == 0
return 0

i = i+ 1
return 1

}"

♦
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9.4 Every Regular Language Is Computable

Theorem 9.12. Every regular language is computable.

Proof. Suppose that A is a regular language. That is, there exists a DFA
M so that L(M) = A. Ask someone else to give us such a DFA M =
(Σ, Q, q0, F, δ). Here is a program R(x) that solves A. It simply runs M on
input x.

"{R(x1x2 . . . xn):
q = q0
i = 1
while i ≤ n
q = δ(q, xi)
i = i+ 1

if q ∈ F
return 1

else
return 0

}"

♦

9.5 Computable Questions About DFAs

A program can take a DFA as an input. It is just a matter of encoding the
DFA as a string. Suppose that M = ({a, b}, {1, 2, 3}, 1, {2, 3}, δ) where the
transition function δ is as follows.

δ a b
1 1 2
2 3 1
3 1 1

A possible encoding of M as a string is

"{a,b}{1,2,3}1{2,3}(1,a:1)(1,b:2)(2,a:3),(2,b:1),(3,a:1)(3,b:1)".

Obviously, many different encodings would work.
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9.5.1 Does M Accept x?

Definition 9.13. The acceptance problem for DFAs is the following decision
problem.

Input. A DFA M (encoded as a string) and a string x.
Question. Does M accept x?

Theorem 9.14. The acceptance problem for DFAs is computable.

Proof. We have seen how to simulate a DFA M on input x. The only
difference here is that M is encoded as a string. But that is not a problem;
any experienced programmer can write a program that reads the encoding
and pulls out all of the features of M .

♦

9.5.2 Does M Accept All Strings?

Let’s look at a more difficult problem.

Definition 9.15. The everything problem for DFAs is the following decision
problem.

Input. A DFA M (encoded as a string) with alphabet Σ.
Question. Does M accept all strings in Σ∗.

Solving the everything problem for DFAs might at first seem impossible.
After all, there are infinitely many strings, and you can’t check them all.
But that is an illusion; it is actually quite easy to check whether M accepts
all strings.

Theorem 9.16. The everything problem for DFAs is computable.

Proof. Suppose M = (Σ, Q, q0, F, δ). Some DFAs have states that cannot
be reached by any input string. M accepts all strings in Σ∗ if every state
that can be reached is an accepting state. The hardest part is determining
the reachable states, and that is actually easy.

Assume that there is a mark bit associated with each state of M that a
program can set to 0 or 1. (That is easy to arrange. If M ’s states are {1,
. . . , n}, all we need is an array of n boolean values to hold the mark bits.)
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"{everything(M):
// Mark all accessible states

Set the mark bit of every state to 0.
Set the mark bit of q0 to 1.
changed = 1
while changed == 1

changed = 0
for each state q of M

if q’s mark bit is 1
for each symbol a in Σ

r = δ(q, a)
if r’s mark bit is 0

set r’s mark bit to 1
changed = 1

// Check if there a marked rejecting state

for each state q of M
if q’s mark bit is 1 and q 6∈ F

return 0
return 1

}"

♦

9.5.3 Does M Accept No Strings?

Definition 9.17. The emptiness problem for DFAs is language {M | L(M) =
{}}. That is, it is the following decision problem.

Input. DFA M (encoded as a string).
Question. Is it the case that M does not accept any strings?

Theorem 9.18. The emptiness problem for finite state machines is com-
putable.

Proof. The proof is similar to the preceding proof, but the algorithm checks
that each reachable state is a rejecting state.

♦
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9.5.4 Is L(M) ⊆ L(N)?

Definition 9.19. The subset problem for DFAs is the following decision
problem.

Input. Two DFAs M1 and M2 (encoded as strings).
Question. Is L(M1) ⊆ L(M2)? That is, is every string in L(M1) also
in L(M2)?

Once again, a shallow thought process leads one to conclude that the subset
problem for DFAs is not computable, since there are infinitely many strings
to check. A more careful look shows that it is computable.

Theorem 9.20. The subset problem for DFAs is computable.

Proof. We have seen, in Theorems 5.7 and 5.8, that the class of regular
languages is closed under complementation and intersection. It is important
that both theorems are proved by constructive proofs. That is,

1. There is an algorithm that, given a DFA M , produces DFA M ′ so that
L(M ′) = L(M).

2. There is an algorithm that, given DFAs M1 and M2, produces DFA M ′

so that L(M ′) = L(M1) ∩ L(M2).

For any two sets A and B,

A ⊆ B ↔ A−B = {}.

But A − B = A ∩ B. The algorithm first builds DFA M3 so that L(M3) =
L(M2). Then it builds DFA M4 so that

L(M4) = L(M1) ∩ L(M3) = L(M1) ∩ (L(M2)) = L(M1)− L(M2).

So L(M1) ⊆ L(M2)↔L(M4) = {}. But we have an algorithm (Theorem
9.7) to tell if L(M4) = {}.
♦
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9.5.5 Are L(M) and L(N) the Same Language?

Definition 9.21. The equivalence problem for DFAs is the following decision
problem.

Input. Two DFAs M1 and M2 (encoded as strings).
Question. Is L(M1) = L(M2)?

Theorem 9.22. The equivalence problem for DFAs is computable.

Proof. For any two sets A and B, by definition,

A = B ↔ A ⊆ B ∧B ⊆ A.

It suffices to test each of L(M1) ⊆ L(M2) and L(M2) ⊆ L(M1) separately.

♦

9.6 Computable Problems About Polynomials

Let’s look at problems involving polynomials with integer coefficients, which
we simply call polynomials. An input to such a problem might be 5x2− 2 or
x2 + 1. A value of x that makes 5x2 − 2 = 0 is called a zero of polynomial
5x2 − 2.

Definition 9.23. The real-zero problem takes a polynomial p of variable x
as input and asks whether there is a zero of p that belongs to R, the set of
real numbers.

For example, polynomial x5−2x3−16 has value 0 when x = 2, so it is a yes-
input to the real-zero problem. Polynomial 4x2 − 4x+ 1 is also a yes-input,
since it has value 0 for x = 1/2.

9.6.1 Quadratic Single-Variable Polymomials

A naive first thought might be that the real-zero problem is not computable
since an algorithm would have to try every possible number. But it should
be clear that the zero problem is computable for quadratic polynomials. The
quadratic formula tells you that equation ax2 + bx+ c = 0 has a real-valued
solution if and only if b2 − 4ac ≥ 0.
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9.6.2 Arbitrary Degree Single-Variable Polymomials

What if polynomials of x are allowed to have any degree? There are formulas
for polynomials of degrees up to 4, but there is no formula for polynomials
of degree 5 or higher. (The lack of a formula for degree 5 polynomials is one
of the celebrated mathematical results of the nineteenth century.) But we
don’t need a formula, only an algorithm.

There are algorithms for finding zeros of polymonials of arbitrarily high de-
gree. The details are beyond the scope of this class, but you can get a rough
idea of how such an algorithm can work. The coefficient with largest ab-
solute value and the polynomial’s degree allow you to compute upper and
lower bounds on potential zeros. Outside that range, the polynomial is head-
ing toward ∞ or −∞. An algorithm can cut that range up into small pieces
and look for an interval where the polynomial changes sign. The polynomial
must cross the x-axis somewhere in that interval.

Although we have not proved it here, the real-zero problem is solvable for
arbitrary polynomials of a single variable.

9.6.3 Multivariate polynomials

A multivariate polynomial , such as xy − y2 + 9z, can have any number of
different variables; it is an expression made using variables, integer constants
and only operations of addition, subtraction and multiplication.

A single-variable polynomial of degree k can have no more than k different
zeros. But a multivariate polynomial can have infinitely many zeros. Look
at equation x− y = 0. Obviously, any pair of values (x, y) is a zero if x = y.

Although the algorithm is very involved, and well beyond the scope of this
class, it turns out that the real-zero problem is computable for arbitrary
multivariable polynomials.
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10 Uncomputable Problems

10.1 Hilbert’s Tenth Problem

There is a another problem about multivariate polynomials that is concerned
with integer solutions.

Definition 10.1. The integer-zero problem takes a multivariate polynomial
p with integer coefficients as input and asks whether there exist integer values
(members or Z) for the variables that occur in p that make p = 0.

In 1900, mathematician David Hilbert posed a list major challenges in math-
ematics. The tenth problem in the list was to find an algorithm to solve the
integer-zero problem or to show that no such algorithm exists. It was not
until 1970 that Hilbert’s Tenth Problem was solved, in the negative, when
Russian mathemetician Yuri Matiyasevich showed that the integer-zero prob-
lem is uncomputable.

A proof that Hilbert’s Tenth Problem is not computable is far out of reach
for us. Matiyasevich relied on work by Martin Davis, Hilary Putnam and
Julia Robinson spanning 21 years, and they relied on prior work. But we will
be able to prove that some other problems are uncomputable.

10.2 Infinite Loops

Recall that we only say that program p computes function f or language L
if p stops on every input. But there are programs that do not stop on every
input (that, by definition, do not compute any function or language).

Let’s write p(x) to indicate the value that program p returns when it is
given input (or parameter) x. Because a program might not always stop,
p(x) might not have a value. It is useful to create a special value, ⊥ (called
“bottom”), and say that p(x) = ⊥ when p runs forever on input x.

You can’t know by running p on input x whether it loops forever; it might just
take a very, very long time to stop. But, from a mathematical standpoint, p
either stops or it doesn’t, so either p(x) = ⊥ or p(x) 6= ⊥.

When a “value” might be ⊥, we use relation ∼= instead of =, where x ∼= y is
read as “x is equivalent to y.”
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Definition 10.2. If x and y are strings then x ∼= y↔x = y. Also, ⊥ ∼= ⊥.
But x 6∼= ⊥ and ⊥ 6∼= x for any string x.

Definition 10.3. p(x)↓ (p halts on input x) is equivalent to p(x) 6∼= ⊥. p(x)↑
(p does not halt on input x) is equivalent to p(x) ∼= ⊥.

10.3 Interpreters

Your familiarity with computers tells you that, except for resource limita-
tions, any computer can run programs written in any programming language.
For example, you can run a Python program on a computer by loading a
Python interpreter onto it.

Interpreters are important tools of computability theory. An interpreter al-
lows you to take a program (a string) and run it inside some other program.
Running a program via an interpreter must produce the same results as run-
ning it directly.

We have allowed programs to be written in any sufficiently strong program-
ming language. Whatever that programming language L is, a self-interpreter
is an interpreter for L written in L.

Definition 10.4. An self-interpreter (or, more briefly, an interpreter) is a
program I having the property that, for every program p and string x, I(p, x)
∼= p(x).

Theorem 10.5. There exists a program I that is an interpreter.

Because we know that an interpreter exists, it is acceptable to write p(x)
within the body of a program, where p is a string that is either a parameter
of the program or that is computed by the program. Running p is just a
matter to running a fixed program, the interpreter, that can be built into
your own program.

10.4 Problems about Programs

Some decision problems ask questions about programs. An easy one is: Does
program p contain a variable called z? But consider the following decision
problem, analogous to the acceptance problem for FSMs.
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Definition 10.6. The acceptance problem for programs is the following
decision problem.

Input. Program p and string x.

Question. Is p(x) ∼= 1?

An obvious approach to solving the acceptance problem is to run p on input
x and see whether the result is 1. But what if p loops forever? Clearly, that
approach does not work.

We have seen that the failure of an obvious approach does not allow us to
conclude that no algorithm exists. Concluding that the acceptance problem
is not computable needs a rock-solid proof. We will give such a proof in a
later section.

10.5 An Uncomputable Decision Problem

Now we identify a decision problem that we can prove is uncomputable.

Definition 10.7. The Halting Problem is language

HLT = {(p, x) | p(x)↓}.

That is, it is the following decision problem.

Input. Program p and string x.

Question. Does p ever stop when it is run on input x?

Theorem 10.8. The Halting Problem is not computable.

Proof.

1. The proof is by contradiction. Start by assuming that the Halting
Problem is computable.

Know: The Halting Problem is computable.

Goal: F.
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2. Now we know something that uses term computable, and that suggests
using a definition. By the definition of a computable decision problem,
saying that HLT is computable is equivalent to saying that there exists
a program r that stops on all inputs and where, for all y,

r(y) ∼= 1 ⇐⇒ y ∈ HLT,

r(y) ∼= 0 ⇐⇒ y 6∈ HLT,

But HLT is a set or ordered pairs. It only makes sense to ask if y ∈ HLT
if y is an ordered pair. So lets say that y = (p, x).

Know: There exists a program r that halts on all inputs
so that, for all p and x, r(p, x) ∼= 1↔ (p, x) ∈ HLT
and r(p, x) ∼= 0↔ (p, x) 6∈ HLT.

Goal: F.

3. When you know there exists something with a particular property, you
ask someone else to give you such a thing. Let’s do that, and call the
program that was given to us r. The fact that r halts on all inputs is
implicit in the two equivalences (1) and (2).

Known variables: r (a program)

Know (1): For all p and x, r(p, x) ∼= 1↔ (p, x) ∈ HLT.

Know (2): For all p and x, r(p, x) ∼= 0↔ (p, x) 6∈ HLT.

Goal: F.

4. By the definition of HLT,

(p, x) ∈ HLT ↔ p(x)↓ .

Known variables: r (a program)

Know (1): For all p and x, r(p, x) ∼= 1↔ p(x)↓ .
Know (2): For all p and x, r(p, x) ∼= 0↔ p(x)↑ .
Goal: F.
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5. So far everything has been boilerplate for a proof by contradition. We
have only used definitions. Now comes the inspiration. Every program-
mer knows how to write an infinite loop. We will allow ourselves to
write “loop forever” in a program to indicate an infinite loop. Let’s
define program s as follows.

"{s(z):
if r(z, z) = 1

loop forever
else

return 1
}"

That program looks like it comes out of nowhere, but the discussion
after this proof gives motivation for defining it. Program s is written
to have two properties.

r(z, z) ∼= 1→ s(z)↑ .

r(z, z) ∼= 0→ s(z)↓ .

Both of those properties should be obvious from the definition of s.

Known variables: r and s (two programs)

Know (1): For all p and x, r(p, x) ∼= 1→ p(x)↓ .
Know (2): For all p and x, r(p, x) ∼= 0→ p(x)↑ .
Know (3): For all z, r(z, z) ∼= 1→ s(z)↑ .
Know (4): For all z, r(z, z) ∼= 0→ s(z)↓ .
Goal: F.

6. Since facts (1) and (2) hold for all p and x, they must hold for p = s
and x = s. Since facts (3) and (4) hold for all z, they must hold for
z = s. (Here, we make use of the fact that program s is a string.)
Making those substitutions yields the following knowledge.
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Known variables: r and s (two programs)

Know (1): r(s, s) ∼= 1↔ s(s)↓ .
Know (2): r(s, s) ∼= 0↔ s(s)↑ .
Know (3): r(s, s) ∼= 1→ s(s)↑ .
Know (4): r(s, s) ∼= 0→ s(s)↓ .
Goal: F.

7. Using known facts (3) and then (2), we get

r(s, s) ∼= 1 → s(s)↑
→ r(s, s) ∼= 0

If r(s, s) ∼= 1, that leads to a contradiction. (r(s, s) cannot be both 1
and 0.) So it is not possible for r(s, s) ∼= 1.

Using known facts (4) and then (1), we get

r((s, s)) ∼= 0 → s(s)↓
→ r(s, s) ∼= 1

If r(s, s) ∼= 0, that also leads to a contradiction. So it is not possible
for r(s, s) ∼= 0.

But facts (1) and (2) tell us that r(s, s) must be either 0 or 1. (After
all, either s(s) ↑ or s(s) ↓.) So no matter what, we have reached a
contradiction, and have proved F.

♦

What was the motivation for program s in step 5? Notice that, later in the
proof, we are only concerned with what s does when its parameter z is s.
But, when z is s, the definition of s look as follows.

"{s(s):
if r(s, s) = 1

loop forever
else

return 1
}"
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(That is not really allowed, since we cannot define a function with its pa-
rameter being itself, but let’s allow it to understand where the definition of
s comes from.)

Now remember that r(p, x) ∼= 1 if and only if p(x)↓ because r was chosen to
be a program that solves the halting problem. In the if-statement, s asks r
whether s halts on input s. If r says that s halts on input s, then s says, not
I don’t, and enters an infinite loop. If r says that s does not halt on input s,
then s says, yes I do, and s halts and returns 1.

In fact, the proof is quite constructive in the sense that, for every program
r that purports to solve the Halting Problem, the proof provides an input
(s, s) that r answers incorrectly.

10.6 Diagonalization

The above proof that the Halting Problem is uncomputable uses pairs of
strings of the form (s, s). If you think about points in the Cartesian plane,
points of the form (x, x) are on the diagonal defined by equation y = x.
Based on that analogy, the proof that the Halting Problem is uncomputable
is called a proof by diagonalization.
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11 Reductions between Problems

A reduction is a way of solving one problem, assuming that you already know
how to solve another problem.

11.1 Turing Reductions

Suppose that A and B are two computational problems. They can be decision
problems or functional problems. We need to formalize the idea that, if we
already know how to solve B, we can solve A. (We need to be careful because
the definition needs to work even when A and B are uncomputable problems.)

Definition 11.1. A Turing reduction from A to B is a program that com-
putes A and that is able to ask questions about B at no cost.

Definition 11.2. Say that A ≤t B provided there exists a Turing reduction
from A to B.

11.1.1 Examples of Turing Reductions

Example 11.3. Suppose that

A = {n ∈ N | n is even}
B = {n ∈ N | n is odd}.

The following program is a Turing reduction from A to B.

"{even(x):
if x ∈ B then

return 0
else

return 1
}"
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Notice that it asks if x ∈ B. That is where it uses B at no cost. Since there
exists a Turing reduction from A to B, we know that A ≤t B.

Example 11.4. Suppose that

A = {p | p is a quadratic polynomial in x and p has a real zero}
B = {p | p is a polynomial in x and p has a real zero}

Notice that B allows p to have any degree. If you are allowed to ask about
zeros of polynomials of any degree, it is easy to ask questions about quadratic
polynomials. The following program is a Turing reduction from A to B,
establishing that A ≤t B.

"{has-zero(p):
if p ∈ B then

return 1
else

return 0
}"

Example 11.5. You can do a Turing reduction between two functions.
Define f : N ×N → N to g : N ×N → N as follows.

f(m,n) = m+ n

g(m,n) = m · n

Here is a reduction from g to f . It multiplies by doing repeated additions.

"{g(m,n):
y = 0
for i = 1, . . . , m
y = f(y, n)

return y
}"

Example 11.6. The preceding three examples showed how to define a Tur-
ing reduction between two computable problems. For them, you could just
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replace the test x ∈ B or the use of f(p, n) by a program that tells you
whether x ∈ B or that computes f(p, n). But the following example shows
a Turing reduction between two uncomputable problems. Define

NOTHLT = {(p, x) | p(x)↑}
HLT = {(p, x) | p(x)↓}

The following is a Turing reduction from NOTHLT to HLT.

"{loops(p, x):
if (p, x) ∈ HLT then

return 0
else

return 1
}"

It is important to recognize that the test (p, x) ∈ HLT is done without the
need for a program that carries out that test. It is done for free, by the
definition of a Turing reduction. That is good because there is no program
that solves the halting problem.

11.1.2 Properties of Turing Reductions

Suppose that A and B are computational problems. The following theorem
should be obvious. Just use the Turing reduction program.

Theorem 11.7. If A ≤t B and B is computable, then A is computable.

We can turn that around using a tautology that is related to the law of the
contrapositive:

(p ∧ q)→ r ↔ (p ∧ ¬r)→ ¬q.

Corollary 11.8. If A ≤t B and A is not computable, then B is not com-
putable.

(A corollary is just a theorem whose proof is obvious or trivial, given a
previous theorem.) That suggests a way to prove that a problem B is not
computable: choose a problem A that you already know is not computable
and show that A ≤t B.
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11.1.3 An Intuitive Understanding of Turing Reductions

Definition 11.2 defines what A ≤t B means. But it can be helpful to have
an intuitive understanding to go along with the definition. Let’s look at
problems from a viewpoint where computational problems come in only two
levels of difficulty: a computable problem is considered easy and an uncom-
putable problem is considered difficult. Then, according to Theorem 11.7
and Corollary 11.8, A ≤t B indicates that

(a) A is no harder than B, and

(b) B is at least as hard as A.

If you keep that intuition in mind, you will make fewer mistakes. For example,
we have seen that, if A is uncomputable and A ≤t B, then B is uncomputable
too (since it is at least as difficult as uncomputable problem A). What if A
is uncomputable and B ≤t A? That only tells you that B is no more difficult
than an uncomputable problem. So?

11.2 Mapping Reductions

Mapping reductions are a restricted form of reductions that only work for
decision problems, but that have some advantages over Turing reductions for
decision problems. (One of those advantages is brevity; mapping reductions
are often short and simple.) Suppose that A and B are languages (decision
problems).

Definition 11.9. A mapping reduction from A to B is a computable function
f such that, for every x,

x ∈ A ↔ f(x) ∈ B

.

Definition 11.10. Say that A ≤m B provided there exists a mapping
reduction from A to B.
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11.2.1 Examples of Mapping Reductions

Example 11.11. Suppose that

A = {n ∈ N | n is even}
B = {n ∈ N | n is odd}

Function f(x) = x+1 is a mapping reduction from A to B. There is no need
to write a program (except to observe that f(x) is computable).

Example 11.12. Suppose that

A = {p | p is a quadratic polynomial in x and p has a real zero}
B = {p | p is a polynomial in x and p has a real zero}

Then f(x) = x is a mapping reduction from A to B.

Example 11.13. Define

K = {p | p(p)↓}
HLT = {(p, x) | p(x)↓}

Then f(p) = (p, p) is a mapping reduction from K to HLT. Notice that

p ∈ K ↔ p(p)↓
↔ (p, p) ∈ HLT.

showing that the requirement p ∈ K↔ f(p) ∈ HLT of a mapping reduction
from K to HLT is met.

11.2.2 Properties of Mapping Reductions

Mapping reductions share some properties with Turing reductions.

Theorem 11.14. If A ≤m B and B is computable then A is computable.

Proof. Suppose that A ≤m B. That is, there exists a mapping reduction
from A to B. Ask someone else to provide a mapping reduction f from A to
B. The following program is a Turing reduction from A to B.
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"{a(x):
y = f(x)
if y ∈ B

return 1
else

return 0
}"

Since x ∈ A ↔ f(x) ∈ B, it should be clear that a(x) computes A. So
A ≤t B. Now simply use Theorem 11.7.

♦

Corollary 11.15. If A ≤m B and A is not computable then B is not
computable.

11.3 Using Turing Reductions to Find Mapping Re-
ductions

Students often find it easier to discover Turing reductions than mapping
reductions. One way to discover a mapping reduction is to find a Turing
reduction first and to convert that to a mapping reduction. You just need to
obey two requirements in the Turing reduction from A to B.

(a) The Turing reduction must only ask one question about whether a
string y is in B.

(b) The answer that the Turing reduction returns must be the same as
the answer (0 or 1) returned by the test y ∈ B.

If you obey those requirements, then you find that your Turing reduction
must have the form

"{a(x):
y = f(x)
if y ∈ B

return 1
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else
return 0

}"

The mapping reduction is f .

We showed earlier that, if A and B are defined by

A = {(p, x) | p(x)↑}
B = {(p, x) | p(x)↓}

then A ≤t B. It is worth noting that A 6≤m B. The reason is that any Turing
reduction from A to B must negate the answer that it gets to the question
about membership in B, and that is not allowed in a mapping reduction.
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12 Using Reductions to Show that Problems

are Not Computable

Section 11 provides two tools, Turing reductions and mapping reductions,
that we can use to demonstrate that a problem is uncomputable. They are
generally much easier to apply than diagonalization. Here are the important
facts about reductions from Section 11.

Corollary 11.8. If A ≤t B and A is not computable, then B is not com-
putable.

Corollary 11.15. If A ≤m B and A is not computable then B is not
computable.

12.1 p(x)↑?

Section 11 defines

NOTHLT = {(p, x) | p(x)↑}
HLT = {(p, x) | p(x)↓}

and shows that NOTHLT ≤t HLT. We know from Section 10 that HLT is
uncomputable. Relationship NOTHLT ≤t HLT only tells us that NOTHLT
is no harder than an uncomputable problem, which tells use nothing about
NOTHLT. But it is easy to turn that particular reduction around.

Theorem 12.1. HLT ≤t NOTHLT.

Proof. The following is a Turing reduction from HLT to NOTHLT, estab-
lishing that HLT ≤t NOTHLT.

"{halts(p, x):
If (p, x) ∈ NOTHLT then

return 0
else

return 1
}"
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By Corollary 11.8, since HLT is uncomputable, NOTHLT is also uncom-
putable.

♦

12.2 The Acceptance Problem

The acceptance problem for programs is as follows.

ACC = {(p, x) | p(x) ∼= 1}.

Theorem 12.2. ACC is uncomputable.

Proof. It suffices to show that HLT ≤t ACC. Here is a Turing reduction
from HLT to ACC. It introduces a new wrinkle: it builds a program on the
fly.

"{halts(p, x):
r = "{r(z): w = p(z); return 1}"
if (r, x) ∈ ACC

return 1
else

return 0
}"

Clearly

(r, x) ∈ ACC ↔ r(x) ∼= 1 by the definition of ACC

↔ p(x)↓ by the definition of r

↔ (p, x) ∈ HLT by the definition of HLT

so program halts(p, x) correctly answers the question: is (p, x) ∈ HLT?

♦

There is really no need for the full power of a Turing reduction here. Function

f(p, x) = ("{r(z) : w = p(z); return 1}", x)

is a mapping reduction from HLT to ACC; f is computable and, as we have
just shown,

(p, x) ∈ HLT ↔ f(p, x) ∈ ACC.
You should begin to recognize the brevity of mapping reductions.
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12.3 Does p Terminate on Input 1?

We have seen the trick of creating a program on the fly. With the next reduc-
tion, we introduce another trick: make that program ignore its parameter,
so that it does the same thing on all strings. To that end, define

T1 = {r | r(1)↓}.

That is, instead of asking whether a give program halts on some given string
x, T1 asks whether the program halts on input 1. That might sound easier
than the Halting Problem, but it is not.

Theorem 12.3. T1 is uncomputable.

Proof. It suffices to show that there is a mapping reduction from HLT to T1;
that is, we show that HLT ≤m T1. The usual way to show that something
exists is to produce one, and that is what we do. The following function f is
a mapping reduction from HLT to T1.

f(p, x) = "{r(q) : w = p(x); return 1}".

Certainly, f is computable. All it does is write a program (a string) and
return that program. f does not run the program that it builds. Notice that
program r(q) runs program p on input x, but ignores the result. Also notice
that r(q) ignores q; r does the same thing regardless of the parameter that
is passed to it.

Let’s refer to program "{r(q) : w = p(x); return 1}" as rp,x, acknowledging
the fact that p and x are built into r, and you cannot write rp,x until you
know what p and x are. Notice that

(p, x) ∈ HLT → p(x)↓ by the definition of HLT

→ rp,x(q)↓ for every q by the definition of rp,x

→ rp,x(1)↓
→ rp,x ∈ T1 by the definition of T1

and
rp,x ∈ T1 → rp,x(1)↓ by the definition of T1

→ p(x)↓ by the definition of rp,x

→ (p, x) ∈ HLT by the definition of HLT
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Putting those together:

(p, x) ∈ HLT ↔ rp,x ∈ T1.

Since f(p, x) = rp,x, that is exactly the requirement for f to be a mapping
reduction from HLT to T1.

♦

12.4 Does p Terminate on Input 2?

Define
T2 = {r | r(2)↓}.

It should be obvious how to modify the proof of Theorem 12.3 to show that
HLT ≤m T2. But we already know that T1 is uncomputable, so showing that
T1 ≤m T2 is enough to show that T2 is uncomputable. Let’s do that.

Theorem 12.4. T1 ≤m T2.

Proof. All we need to do is to transform a question of whether a program a
halts on input 1 into an equivalent question of whether another program ba
halts on input 2. That is easy to do: define

ba = "{b(q) : return a(1)}".

Clearly,
a(1)↓ ↔ ba(2)↓ .

That is,
a ∈ T1 ↔ ba ∈ T2.

So f(a) = ba is mapping reduction from T1 to T2.

♦

12.5 The Everything Problem for Programs

Define
ALL = {p | ∀x(p(x)↓)}.

That is, ALL is the following decision problem.
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Input. Program p.

Question. Does p halt on every input?

Theorem 12.5. ALL is uncomputable.

Proof. It certainly is not enough to argue that an algorithm to solve ALL
would need to try every input. That is nonsense. Suppose stopper is a
program that clearly halts on every input.

"{stopper(x)
return 1

}"

Do you need to try it on every input to be sure that it stops on every input?
Of course not. Consider another program that clearly loops forever on all
inputs, such as the following.

"{looper(x)
while(1)

do nothing
}"

You can see from the structure of the program that it loops forever on all
inputs. What we need to show is that there is no program R that takes any
program p as an input and tells you whether p stops on all inputs.

The proof is a mapping reduction from T1 to ALL. Define

rp = "{r(q) : return p(1)}"
f(p) = rp

Since rp ignores its parameter q, it should be clear from the definition of rp
that

p(1)↓ ↔ ∀q(rp(q)↓).

That is,
p ∈ T1 ↔ rp ∈ ALL

which means that f(p) = rp is a mapping reduction from T1 to ALL.

♦
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12.6 Complementation and Computability

It is easy to relate the computability of language S and its complement,
language S.

Theorem 12.6. Suppose S is a language over alphabet Σ. If S is a com-
putable then S is also computable.

Proof. Suppose that program p computes S. That is, p stops on every input
and, for every x ∈ Σ∗,

p(x) ∼= 1 ↔ x ∈ S.
The following program computes S by flipping answers from 1 to 0 and from
0 to 1.

"{Sbar(x):
if p(x) == 1

return 0
else

return 1
}"

In fact, it is obvious that Theorem 12.6 extends to an equivalence.

Theorem 12.7. S is computable if and only if S is computable.

12.7 Rice’s Theorem

Excluding the proof of Theorem 12.1, you should notice similarities in the
above proofs. Excepting only HLT, all of the problems that we looked at
are questions about programs, and those questions only depend on what the
program does when you run it.

Can we prove a general theorem that takes the similarities of those proofs
into account, so that those theorems all become corollaries of the general
theorem? Such a theorem would say something like, “It is not computable
to determine whether a program has a property that is based solely on what
that program does when you run it.” We can do something like that, but
it is much too vague. The first step we need to make is to find a precise
definition of what it means for a set of programs to depend only on what a
program does when you run it.
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12.7.1 Definitions and Some Obvious Theorems

Definition 12.8. Programs p and q are equivalent if p(x) ∼= q(x) for every
x. That is, the result of p(x) is the same as the result of q(x) for every x.
We write p ≈ q to mean that p and q are equivalent programs.

Suppose that L is a set of programs over alphabet Σ. Define L = Σ∗ − L.

Definition 12.9. L is nontrivial if L 6= {} and L 6= Σ∗. That is, neither L
nor L is empty.

The following theorem is obvious.

Theorem 12.10. L is nontrivial if and only if L is nontrivial.

The next definition is critical to what we are trying to do. Read it and make
sure that you understand what it says.

Definition 12.11. Suppose L is a set of programs. Say that L respects
equivalence provided, for every pair of equivalent programs p and q, either p
and q are both in L or p and q are both in L. That is, L must classify any
two equivalent programs the same way; they are either both in L or both not
in L.

The following is immediate from Definition 12.11.

Theorem 12.12. L respects equivalence if and only if L respects equiva-
lence.

Definition 12.13. Define

LOOP = "{LOOP(x) : loop forever}"

to be a program that loops forever on all inputs.

12.7.2 Rice’s Theorem

Our goal is to prove a result called Rice’s Theorem, which states that every
nontrivial set of programs that respects equivalence is uncomputable. We
will do that using a lemma and a corollary to the lemma.
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Lemma 12.14. If L is a nontrivial set of programs that respects equivalence,
and LOOP 6∈ L, then HLT ≤m L. (That is, L is at least as difficult as
uncomputable set HLT.)

Proof.

1. Suppose that L is a nontrivial set of programs that respects equivalence
and where LOOP 6∈ L.

Known variables: L

Know (1): L is a set of programs.

Know (2): L is nontrivial.

Know (3): L respects equivalence.

Know (4): LOOP 6∈ L.

Goal: HLT ≤m L.

2. Since L is nontrivial, there must be some program that is a member of
L. Ask someone else to provide one. Let’s call it Y .

Known variables: L, Y

Know (1): L is a set of programs.

Know (2): L is nontrivial.

Know (3): L respects equivalence.

Know (4): LOOP 6∈ L.

Know (5): Y ∈ L.

Goal: HLT ≤m L.

3. For any given p and x, define rp,x as follows.

"{rp,x(z):
w = p(x)
return Y (z)

}"
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Notice that, for arbitrary p and x,

(p, x) ∈ HLT → p(x)↓ from the definition of HLT

→ ∀z(rp,x(z) ∼= Y (z)) from the definition of rp,x

→ rp,x ≈ Y

→ rp,x ∈ L since L respects equivalence

(p, x) 6∈ HLT → p(x)↑ by the definition of HLT

→ ∀z(rp,x(z)↑) by the definition of rp,x

→ rp,x ≈ LOOP

→ rp,x 6∈ L since LOOP 6∈ L and L respects equivalence

Known variables: L, Y , rp,x

Know (1): L is a set of programs.

Know (2): L is nontrivial.

Know (3): L respects equivalence.

Know (4): LOOP 6∈ L.

Know (5): Y ∈ L.

Know (6): ∀p∀x((p, x) ∈ HLT→ rp,x ∈ L)

Know (7): ∀p∀x((p, x) 6∈ HLT→ rp,x 6∈ L)

Goal: HLT ≤m L.

4. Our mapping reduction from function HLT to L is:

f(p, x) = rp,x.

Clearly, f is computable, since it only needs to write down program
rp,x. Putting facts (6) and (7) together,

(p, x) ∈ HLT ↔ rp,x ∈ L.

So f is a mapping reduction from HLT to L.
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♦

Corollary 12.15. If L is a nontrivial set of programs that respects equiva-
lence, where LOOP 6∈ L, then L is not computable.

Proof. That follows immediately from Lemma 12.14, corollary 11.15 and the
fact that HLT is uncomputable.

♦

Theorem 12.16. (Rice’s Theorem) If L is a nontrivial set of programs
that respects equivalence, then L is not computable.

Proof. There are two cases: either LOOP 6∈ L or LOOP ∈ L.

If LOOP 6∈ L, then Theorem 12.16 follows immediately from Corollary 12.15.

So consider the case where LOOP ∈ L. Then LOOP 6∈ L. By Theorems
12.10 and 12.12, L is nontrivial and L respects equivalence. So L meets
the requirements of Corollary 12.15. We conclude that, in this case, L is
uncomputable. By Theorem 12.7, L is also uncomputable.

♦

12.8 Examples Using Rice’s theorem

12.8.1 Example: T1 is Uncomputable

Recall that we defined
T1 = {r | r(1)↓}.

Let’s reprove that T1 is uncomputable using Rice’s Theorem.

Theorem 12.17. T1 is uncomputable.

Proof. Since some programs halt on input 1 and some don’t, T1 is nontrivial.
Suppose that p and q are two equivalent programs. Then

p ∈ T1 ↔ p(1)↓ by the definition of T1

↔ q(1)↓ since p ≈ q

↔ q ∈ T1 by the definition of T1

So T1 respects equivalence. By Rice’s Theorem, T1 is uncomputable.

♦
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12.8.2 Example: Is L(p) finite?

Define
FINITE = {p | L(p) is a finite set}.

FINITE is the following decision problem.

Input. A program p.

Question. Is L(p) finite? That is, is {x | p(x) ∼= 1} a finite set?

Notice that FINITE is not a finite set! It is a set of programs. For every
computable set S, there are infinitely many programs that solve S. (You can
make infinitely many variations on a program without changing the set that
it decides.) So there are infinitely many programs p where L(p) = {}, and
all of those are members of FINITE.

Theorem 12.18. FINITE is uncomputable.

Proof. FINITE is nontrivial. Some programs answer 1 on only finitely many
inputs, and some answer 1 on infinitely many inputs.

Suppose that p and q are two equivalent programs. Then

p ∈ FINITE ↔ L(p) is a finite set

↔ L(q) is a finite set since p ≈ q

↔ q ∈ FINITE

So FINITE respects equivalence. By Rice’s Theorem, FINITE is uncom-
putable.

♦

12.8.3 Example: Is L(p) = {}?

Define
EMPTY = {p | L(p) = {}}.

EMPTY is not an empty set! It is the following decision problem.

Input. A program p.

Question. Is it the case that L(p) = {}? That is, are there no inputs
x on which p stops and answers 1?
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Theorem 12.19. EMPTY is uncomputable.

Proof. EMPTY is clearly nontrivial. It also respects equivalence.

p ∈ EMPTY ↔ L(p) = {}
↔ L(q) = {} since p ≈ q

↔ q ∈ EMPTY

By Rice’s Theorem, EMPTY is uncomputable.

♦

12.9 Are p and q equivalent?

Define
EQUIV = {(p, q) | p ≈ q}.

Rice’s Theorem has nothing to say about EQUIV because EQUIV is not a
set of programs. It is a set of ordered pairs of programs. Nevertheless, we
can show that EQUIV is uncomputable.

Theorem 12.20. EQUIV is uncomputable.

Proof. Define
NEVERHALT = {p | ∀x(p(x)↑)}.

NEVERHALT is a nontrivial set of programs that respects equivalence.
Rice’s theorem tells us that NEVERHALT is uncomputable. An equivalent
definition is:

NEVERHALT = {p | p ≈ LOOP}.

Function f defined by
f(p) = (p,LOOP)

is a mapping reduction from NEVERHALT to EQUIV, since

p ∈ NEVERHALT ↔ p ≈ LOOP

↔ (p,LOOP) ∈ EQUIV
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12.10 K

Define
K = {p | p(p)↓}.

K is a set of programs, but it does not respect equivalence. Let’s try to show
that K respects equivalence to see where the proof breaks down.

p ∈ K ↔ p(p)↓
↔ q(p)↓ since p ≈ q

But what q does on input p is irrelevant to determining whether q ∈ K. All
that matters is what q does on input q.

Nevertheless, we can show:

Theorem 12.21. K is uncomputable.

Proof. Rice’s theorem is not a help here. But it suffices to show that HLT ≤m

K. For arbitrary p and x, define rp,x as follows.

"{rp,x(z):
w = p(x)
return 1

}"

Notice that rp,x ignores its parameter, z. It just runs p(x). It is evident that

(p, x) ∈ HLT → p(x)↓
→ ∀z(rp,x(z)↓)
→ rp,x(rp,x)↓)
→ rp,x ∈ K

and

(p, x) 6∈ HLT → p(x)↑
→ ∀z(rp,x(z)↑)
→ rp,x(rp,x)↑)
→ rp,x 6∈ K

which tells us that
f(p, x) = rp,x

is a mapping reduction from HLT to K.
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12.11 Concrete examples

Without concrete examples, it can be easy to believe that our theorems
about problems being uncomputable are only of abstract, mathematical sig-
nificance, and have no bearing on the real world. So let’s look at some
concrete examples to see that the real world is not immune to mathematical
theorems.

12.11.1 The 3n+1 problem

The 3n + 1 problem concerns an infinite collection of sequences of integers.
Select a positive integer n to start a sequence. Follow it by n/2 if n is even
and by 3n+ 1 if n is odd. Stop the sequence when it reaches 1. The 3n+ 1
sequence starting with 9 is (9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10,
5, 16, 8, 4, 2, 1).

It is not obvious that the 3n + 1 sequence stops for all starting values. It
is conceivable that it gets into a cycle. It is also conceivable that, for some
starting values, the numbers in the 3n + 1 sequence keep getting larger and
larger, without bound. In fact, nobody knows whether every 3n+1 sequence
is finitely long. But we can always make a conjecture.

Conjecture 12.22. The 3n+1 sequence is finitely long for every start value.

Look at the following program.

"{test(n):
i = n
while i > 1

if i is even
i = i/2

else
i = 3i+ 1

}"

Can you tell whether test is in ALL? (That is, does test halt on all inputs
x?) If test is in ALL, then Conjecture 12.22 is true. If not, then Conjecture
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12.22 is false. If you can write a computer program that solves ALL, then
that program tells you whether the above conjecture is true.

But that seems unreasonable; a computer should not be able to resolve a
deep conjecture like that. The fact that ALL is uncomputable keeps you
from solving a deep conjecture by running a computer program that seems
to have nothing to do with the conjecture.

12.11.2 Does program p test whether a number is prime?

Now suppose that you are serving as a grader for a computer programming
course. One of the assignments for that course asks students to write a
program that reads an integer n > 1 and tells whether n is prime. As grader,
you are tasked with determining whether each submission is correct, with
the sole criterion for correctness being that the program correctly determines
whether n is prime for every integer n. (In the programming language being
used, integers can be arbitrarily large, so you can’t try the program on a
finite range of integers to decide whether it works.)

To make sure that you are ready, you write your own program p to tell if
a number is prime. Now, given a student submission q, the problem is to
determine whether q ≈ p. But that is uncomputable! Could that possibly be
a problem? Suppose that a particularly devious student submits the following
program.

"{q(n)
i = n
while i > 1

if i is even
i = i/2

else
i = 3i+ 1

i = 2
while i < n

if n mod i == 0
return 0

i = i + 1
return 1

}"
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You notice that, if Conjecture 12.22 is true, the submitted program q is
correct. But if Conjecture 12.22 is false, then there are values n on which q
loops forever, meaning that q is incorrect. In order to grade q according to
the grading criterion, you must determine whether Conjecture 12.22 is true!

12.11.3 Goldbach’s conjecture

The following conjecture is due to Goldbach.

Goldbach’s Conjecture 12.23 Every even integer that is greater than 2 is
the sum of two prime integers.

For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, etc. Nobody knows
whether Goldbach’s conjecture is true, and it appears to be a very difficult
nut to crack. But we can write the following program, which contains an
infinite loop that checks, for each even number n, whether there are two
prime numbers whose sum is n. If it finds an even number n that is not the
sum of two prime numbers, it stops. Otherwise, it loops forever.

"{goldbach()
n = 4
while(1)
i = 2
found = 0
while found == 0 and i < n

if i is prime and n− i is prime
found = 1

i = i+ 1
if found == 0

return 0
n = n+ 2

}"

To answer Goldbach’s conjecture, all you need to do is ask whether program
goldbach ever stops. You can ask whether it is in ALL or in T1 or in a variety
of languages because goldbach ignores its input.

Goldbach’s conjecture is another deep conjecture that could be resolved by
running a computer program if ALL or T1 is computable. The fact that no
such computer program exists should come as no surprise.
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12.11.4 Compilers

Compilers for programming languages offer warnings when you do something
suspicious (some more than others). One warning that would be nice would
be whether the program can ever loop forever. Yet, no compilers offer such
warnings. Can you say why not?
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13 Partially Computable Sets and m-Complete

Problems

13.1 Partially Computable Sets

For a program p, we have defined

L(p) = {x | p(x) ∼= 1}

We also added a stipulation that p can only be said to decide L(p) if p halts
on all inputs. What if we remove the stipulation? Does the definition of L(p)
make any sense then?

Let’s say that a language X is partially computable if there exists a program
p so that X = L(p), without the stipulation that p must halt on all inputs.
Is there a difference between the notion of a computable language and a
partially computable language?

It is easy to see that the class of partially computable languages is not the
same as the class of computable language. We know that HLT is not com-
putable.

Theorem 13.1. HLT is partially computable.

Proof. Here is a program halt(x) where L(halt) = HLT.

"{halt(p, x):
Run p(x)
return 1

}"

You can check that HLT is, indeed, the set of all ordered pairs (p, x) where
halt(p, x) ∼= 1. What is going on here?

The trick lies in the fact that halts(p, x) answers “no” by looping forever.
That is unpleasant because you can’t tell the difference between a program
that is looping forever and a program that is just taking a very long time to
stop.

Notice that every computable language is also partially computable. That is
easy. The requirement

L(p) = {x | p(x) ∼= 1}
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is the same as the requirement for a language to be computable. We have
just omitted the extra requirement that p must stop on every input.

13.2 M-Complete Problems

BIG IDEA: We can identify hardest problems in particular classes.

What is the point of defining partially computable languages? Well, for
one thing, they give us a third level of difficulty. A language can be com-
putable; partially computable (but not computable); and not even partially
computable. For example, ALL is known not to be partially computable.

For our purposes, the class of partially computable languages gives us an
opportunity to identify languages are the most difficult partially computable
problems.

Suppose that you want to show that person t is a tallest person in the room.
(It is possible for two people to be equally tall, so there might be more than
one tallest person). First, you would obviously need for person t to be in the
room. Next, you would need to compare person t’s height with the height
of every other person in the room and find that t is at least as tall as every
person in the room.

We can use an analogous idea to identify most difficult partially computable
problems.

Definition 13.2. Say that language T is m-complete if both of the following
are true.

1. T is partially computable.

2. X ≤m T for every partially computable language X.

If you think of relation ≤m as meaning “no more difficult than,”, then you can
see that an m-complete language is one of the hardest partially computable
languages.

Do m-complete languages exist? Yes, and HLT is one of them.

Theorem 13.3. HLT is m-complete.
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Proof. We have seen that HLT is partially computable, so condition (1) is
met. Now we must show that X ≤m HLT for every partially computable
language X.

Suppose that X is partially computable. Select a program r that partially
computes X. We can modify r so that it never answers “no” by making it
go into an infinite loop instead of answering no. Then we find that

X = {x | r(x)↓}

since, for the modified program r, halting is equivalent to answering “yes.”

Keep in mind the goal here: show that X ≤m HLT. An m-reduction from X
to HLT is

f(x) = (r, x).

It is easy to check that f(x) has both of the properties needed of an m-
reduction from X to HLT. Clearly, f is computable, since it just writes the
fixed program r along with x. Also, for every x,

x ∈ X ↔ f(x) ∈ HLT.

♦
It should not be surprising that HLT is one of the most difficult partially
computable languages. If you could solve HLT then you could solve every
partially computable language; just use your solution to HLT to tell whether
or not a program is looping forever, making ⊥ just as good an answer as ’no’.

A most difficult partially computable language ought not to be computable.
Take HLT as an example.

Theorem 13.4. If L is m-complete then L is uncomputable.

Proof. HLT is partially computable. By the definition of an m-complete
language, HLT ≤m L. By Corollary 11.15, L is not computable. (Intuitively:
L is at least as hard as uncomputable problem HLT.)

♦
Later, we will see another context where we want to find problems that are
among the most difficult problems in a particular class.
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13.3 Co-Partially Computable Sets

There is an asymmetry in the definition of partially computable sets. A
language L is partially computable if it is solvable by a program that stops
on inputs that are in L and loops forever on inputs that are not in L. What
if we define an analogous class of problems that are solvable by programs
that stop when the answer is no and loop forever when the answer is yes?

Definition 13.5. Language L is co-partially computable if there exists a
program p so that stops when x is not in L and that loops forever when x is
in L.

Is that the same class as the partially computable languages? No, because
of the asymmetry! Look at HLT. You already know that there is a program
p that stops on an input that is in HLT and loops forever on inputs that are
not in HLT. The same program p halts when x 6∈ HLT, and shows that HLT
is co-partially computable.

The following theorem is enough to show that the partially computable lan-
guages cannot be the same as the co-partially computable language.

Theorem 13.6. For every language L, L is computable if and only if L is
both partially computable and co-partially computable.

Proof. First, suppose that L is both partially computable and co-partially
computable. Get a program p that stops on inputs that are in L and another
program q that stops on inputs that are not in L. To decide whether x ∈ L,
run p(x) and q(x) concurrently. Eventually, one of them must stop. If the
program that stops is p, say that x is in L. If the program that stops is q,
say that x is not in L.

Next, suppose that L is computable. It is easy to show that L is both partially
computable and co-partially computable. For the former result, just take a
program that decides p and make it loop forever when it is about to stop
and answer ’no’. For the latter result, make p loop forever when it is about
to answer ’yes’.

♦
Later, we will see another class that shares the asymmetry in its definition
as the class of partially computable sets and has a notion of most difficult
problems. Whether or not an analog of Theorem 13.6 holds is critical to
whether there exist public-key cryptosystems.
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14 Computational Complexity and Polyno-

mial Time

A program is only said to compute, or decide, a problem if it eventually stops
on every input. For computability, it does not matter how long the program
takes to produce an answer.

But, from a practical standpoint, time matters. The data switches that
form the backbone of the internet process a data packet roughly every 10-
20 nanoseconds. They can only afford to run extremely fast algorithms.
For most everyday purposes, an algorithm that gets its answer in a few
seconds is fast enough, and for some problems, a program that takes a few
minutes or hours is fast enough. But a program that takes years is usually
not acceptable.

With this section we start to look at what can be computed efficiently. To do
that, we need to choose a reasonable definition of an “efficient” algorithm,
and to study which problems can be solved efficiently under that definition.

A definition of efficiency cannot be based on any fixed amount of time. The
larger the input is, the longer we expect a program to take, so a reasonable
notion of efficiency should be concerned with the time that a program takes
as a function of the length of the input. Also, a faster computer will produce
an answer faster even for the same algorithm, and we need a way to get
processor speed out the way.

14.1 The Class P

A program performs a sequence of instructions, and the time that it uses is
just a count of the number of instructions that it performs before it stops.
In this view, time has no units; it is a pure number. We assume that it takes
at least one instruction to look at a symbol in the input and at least one
instruction to write one symbol in the output.

Definition 14.1. Time(p,x) is the number of instructions that program p
takes when it is run on input x. If p(x)↑, then Time(p,x) = ∞.

Definition 14.2. Let f : N → N . A program p runs in time O(f(n)) if
there exists constants a and c so that, for all n > a and all strings x of length
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n, Time(p, x) ≤ c · f(n).

Definition 14.3. Program p runs in polynomial time if there exists a positive
integer k so that p runs in time O(nk). When p runs in polynomial time, we
say that p is a polynomial-time algorithm.

Definition 14.4. P is the class of all decision problems that have polynomial-
time algorithms.

Notice that P is a set of problems, not a set of programs. It makes no sense
to say that a program is in P.

14.2 Examples of Problems that Are In P

14.2.1 Example: is x a Palindrome?

A palindrome is a string such as "aabaa" that is the same forwards and
backwards. The Palindrome Problem is the following decision problem.

Input. String x.

Question. Is x a palindrome?

The Palindrome Problem is in P. You should be able to figure out an algo-
rithm that solves the Palindrome Problem in time O(n).

14.2.2 Example: Does DFA M Accept x?

We have seen that it is computable to determine if a given DFA M accepts a
given string x. It should also be clear that an algorithm can do that in time
that is proportional to the product of the length of the description of M and
the length of x. (You should be able to do much better than that, but it is
fast enough for our purposes.) If the input has length n, that is surely O(n2)
time.

14.2.3 Example: Is x · y = z?

How might you solve the following decision problem?
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Input. Three positive integers x, y and z.

Question. Is x · y = z?

The obvious thing to do is to multiply x and y and check whether the answer
is z. It is important to notice that the time needed to do that is not a
constant, since x, y and z can be very large. When a number occurs in
the input, its length is the number of digits needed to write it down. For
example, 490 has length 3. The algorithm that you learned in elementary
school multiplies an i-digit number by a j-digit number in time O(ij). The
length of the input is the total number of symbols that it contains. Clearly,
if x has length i and y has length j and the total length of the input if n,
then i < n and j < n, and it is possible to check an integer product in time
O(n2). That is polynomial time.

14.2.4 Example: Is x a Prime Number?

The Primality Problem is the following decision problem.

Input. A positive integer x.

Question. Is x prime?

Here is an algorithm that solves the Primality Problem.

"{prime(x):
i = 2
while i < x

if n mod i == 0
return 0

i = i+ 1
return 1

}"

How much time does that algorithm take? It goes around the loop x − 2
times. If x is n digits long, then x is in the rough vicinity of 10n. (Assuming
no leading 0s, 10n−1 ≤ x < 10n.) The division algorithm that you learned
in elementary school divides an m-digit number by an n-digit number in
time O(mn). Puting that all together, we find that our algorithm for testing
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whether an integer is prime takes time O(n210n). But function f(n) = 10n

grows faster than any polynomial. That is, for every k,

lim
n→∞

10n

nk
=∞.

Our primality-testing algorithm is not a polynomial-time algorithm.

What does that tell us about whether the Primality Problem is in P? Abso-
lutely nothing! You can write a bad algorithm for any computable problem.
The issue is not whether there is a bad algorithm to solve the Primality
Problem, but whether there is a polynomial-time algorithm for it.

As it turns out, the primality problem is in P. It was long conjectured to be
in P, and was shown to be in P in 2003.

14.3 The Validity Problem for Propositional Logic

Chapter 1 defines the notion of a valid propositional formula. The Valid-
ity Problem for Propositional Logic (or simply the Validity Problem) is the
following decision problem.

Input. A propositional formula φ.

Question. Is φ valid?

You already know an algorithm that solves that problem: truth tables. Sup-
pose that φ has v variables. Then a truth table for φ has 2v rows, and
determining validity takes time at least 2v.

Determining whether an algorithm runs in polynomial time requires deter-
mining the algorithm’s running time in terms of the length n of the input.
The number of variables v is surely shorter than the total length of φ, but
how close to n can v be? As long as we allow long variable names (such as
x1, x2, . . . ), it is easy to write an interesting propositional formula of length
n with at least

√
n variables. A little calculus shows that

lim
n→∞

2
√
n

nk
=∞

for every k, so the truth table algorithm does not run in polynomial time.

What does that have to say about whether the Validity Problem is in P?
Absolutely nothing! Nobody knows a polynomial-time algorithm for the
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Validity Problem, but that lack of knowledge also is not convincing evidence
that the Validity Problem is not in P.

Beginning with the next section, we begin to address the question of whether
the Validity Problem is in P.
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15 Nondeterminism and NP

15.1 A Larger Class than P

In Section 13, we saw that it can be useful to have a class of problems that
is a little larger than the class that you are interested in. For example, that
allows you to identify problems that are among the most difficult problems
in the larger class. If class C is a subset of class D and X is one of the most
difficult problems in the larger class D, you would expect X not to be in the
smaller class C.

In this section, we introduce a class NP that (we hope) is larger than P.

15.2 Mersenne’s Conjecture

In 1644, Marin Mersenne made what came to be known as Mersenne’s con-
jecture: 2n − 1 is prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257.
and is composite for all other positive integers n ≤ 257.

Mersenne’s conjecture stood until 1903 when Frank Cole made a presentation
that put it to rest. The presentation was quite short. By starting with 2,
successively doubling and finally subtracting 1, Cole showed that

267 − 1 = 147, 573, 952, 589, 676, 412, 927.

Then he wrote down two numbers and multiplied them together.

761,838,257,287
× 193,707,721

147,573,952,589,676,412,927

That was all it took to convince Cole’s audience that Mersenne’s conjecture
was mistaken. (Other mistakes in it were discovered later.)

But where did Cole get the factors of 267 − 1? He said that it took “three
years of sundays” to find them.

In idealized form, our system of justice is supposed to work as follows. First,
the police gather evidence. Then, the prosecutor presents the case to a jury.
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Finally, the jury rules on whether the evidence is convincing. If the jury does
not find the evidence convincing, the jurors are not required to go out and
find new evidence. The case is over.

Frank Cole played the role of police and prosecutor and his audience played
the role of jury. It can take much less time to present a case than it does to
find the evidence.

15.3 Evidence Checkers

We can break down testing whether string x is in language A into two parts:
finding evidence and checking the evidence.

Definition 15.1. A polynomial-time evidence checker for language A is a
program check(e, x) where there exists a positive integer k so that

1. check(e, x) runs in polynomal time (in the length of ordered pair (e, x)).

2. If x ∈ A then there is a string e (the evidence) where |e| ≤ |x|k and
check(e, x) = 1. That is, members of A have short, easy to check
evidence that they are members of A. (The jury correctly recognizes
convincing evidence.)

3. If x 6∈ A then there does not exist any string e so that check(e, x) = 1.
That is, the evidence checker cannot be fooled into believing that x ∈ A
when in fact x 6∈ A. (The jury does not convict on bad evidence.)

There is an important asymmetry in evidence checkers. If x ∈ A, then there
must be checkable evidence that x ∈ A. But if x 6∈ A, no evidence is required
showing that x 6∈ A. All that is required is a lack of evidence that x ∈ A.

15.4 Definition of NP

Definition 15.2. NP is the class of all decision problems that have polynomial-
time evidence checkers.

For example, an integer x is composite if x > 1 and x is not prime. The
smallest composite number is 4 (= 2 · 2). Define

COMPOSITE = {x ∈ N | x is composite}.
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It is easy to see that COMPOSITE is in NP. (Frank Cole showed how.) The
following is a polynomial-time evidence checker for COMPOSITE where the
evidence e should be a factor of x and the checker verifies that.

"{composite(e, x):
If 1 < e < x and x mod e == 0

return 1
else

return 0
}"

A simpler way to present an evidence checker is to list (1) the input, (2) the
evidence and (3) the conditions that needs to be satisfied for the evidence to
be convincing.

Evidence checker for COMPOSITE

Input Positive integer x

Evidence Positive integer e

Requirement 1 < e < x and x mod e = 0

15.5 Examples of Problems In NP

15.5.1 Is a given propositional formula satisfiable?

Definition 15.3. A propositional formula φ is satisfiable if there exists a
truth-value assignment for the variables in φ that makes φ true.

Definition 15.4. The Satisfiability Problem for Propositional Logic (SATPL)
is the following decision problem.

Input. A propositional formula φ.
Question. Is φ satisfiable?

Theorem 15.5. SATPL is in NP.

Proof. All we need is a polynomial-time evidence checker for SATPL. If you
think about a truth-table for φ, you only need to look at one row to determine
that φ is satisfiable.
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Evidence checker for SATPL

Input. Propositional formula φ

Evidence. Truth value assignment a

Requirement. (a a φ) is true.

♦

15.5.2 Does a Graph Have a Small Vertex Cover?

Definition 15.6. Suppose that G = (V,E) is a simple graph. A vertex cover
of G is a subset C ⊆ V such that, for every edge {u, v} ∈ E, C∩{u, v} 6= {}.
That is, every edge must be incident on at least one member of the vertex
cover C.

Definition 15.7. The Vertex Cover Problem (VCP) is the following decision
problem.

Input. A simple graph G and a positive integer k.
Question. Does there exist a vertex cover C of G where |C| ≤ k?

Theorem 15.8. VCP ∈ NP.

Proof. Decision problems in NP are often stated as a question about whether
something exists. For example, VCP asks whether a vertex cover of a limited
size exists. To find a polynomial-time evidence checker, use the thing whose
existence is questioned as the evidence. The following is an evidence checker
for VCP.

Evidence checker for VCP

Input Simple graph G = (V,E) and positive integer
k

Evidence Set C ⊆ V

Requirement |C| ≤ k and C is a vertex cover of G.

♦
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15.5.3 Can a List of Integers Be Partitioned Equally?

Definition 15.9. A list of positive integers x1, x2, . . . , xn is equally parti-
tionable if there exists an index set I ⊆ {1, 2, . . . n} such that∑

i∈I
xi =

∑
i 6∈I

xi.

For example, suppose the list of integers is x1 = 14, x2 = 10, x3 = 5, x4 = 7,
x5 = 2, x6 = 4, x7 = 6. Index set {1, 6, 7} equally partitions that list since
x1 + x6 + x7 = 14 + 4 + 6 = 24 and x2 + x3 + x4 + x5 = 10 + 5 + 7 + 2 = 24.

Definition 15.10. The Partition Problem (PP) is the following decision
problem.

Input. A list x1, x2, . . . , xn of positive integers.
Question. Is x1, x2, . . . , xn equally partitionable?

Theorem 15.11. PP ∈ NP.

Proof. List x1, x2, . . . , xn is equally partitionable if there exists an index
set I so that ∑

i∈I
xi =

∑
i 6∈I

xi.

That suggests using I as the evidence.

Evidence checker for PP

Input List x1, x2, . . . , xn of positive integers

Evidence Index set I ⊆ {1, . . . n}
Requirement

∑
i∈I

xi =
∑
i 6∈I

xi

♦

15.6 Every Problem In NP Is Computable

Theorem 15.12. If A ∈ NP then A is computable.
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Proof. Suppose that A ∈ NP. Let c(e, x) be a polynomial-time evidence
checker for A. By the definition of a polynomial-time evidence checker, there
is an integer k so that x ∈ A if and only if there exists a string e with
|e| ≤ |x|k and c(e, x) = 1.

An algorithm can decide whether x ∈ A by computing c(e, x) for every string
e where |e| ≤ xk, answering yes if any of those yields 1.

♦

15.7 Every Problem In P Is Also In NP

Theorem 15.13. Every language that is in P is also in NP. That is, P ⊆ NP.

Proof. Suppose that A is a language in P. By definition, that means there
is a polynomial-time algorithm inA(x) where inA(x) = 1↔x ∈ A. The
following is a polynomial-time evidence checker for A. It does not need the
evidence, so it ignores the evidence.

Evidence checker for A

Input x

Evidence any string e

Requirement inA(x) = 1

♦

15.8 The P = NP Question

Think of a problem in NP as a kind of puzzle. Solving a puzzle requires
finding a solution, which amounts to evidence that the puzzle has a solution.
Often, the solution for a puzzle in the newspaper or a book is provided, and
peeking at the solution is much less time consuming (though less satisfying)
than finding the solution yourself.

Theorem 15.13 tells us that P ⊆ NP. But is NP ⊆ P? If NP ⊆ P, then, at
least up to a polynomial, peeking at the solution is not helpful; you can just
find the solution yourself.
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If NP ⊆ P then P = NP. Surprisingly, nobody knows whether P = NP. It is
widely conjectured that P 6= NP, but we have already seen that a conjecture
can stand for over 200 years only to be overturned.
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16 NP-Completeness

16.1 “Easy” and “Hard” Problems

In Section 11, we only considered two levels of difficulty of problems: com-
putable problems and uncomputable problems. Starting with Section 14, we
have begun by considering only just two levels of difficulty, where we think
of a problem as “easy” if it is in P and as “hard” if it is not in P. Let’s refer
to the class of decision problems that are not in P (the “hard” problems) as
P.

The previous section introduced a third level of difficulty, NP. A problem
that is in P is also in NP and every problem that is in NP is computable.

A common misconception is that NP = P. That is not the case at all. Can
you think of a problem that is in P but not in NP? How about the Halting
Problem (HLT)? Since every problem in NP is computable (Theorem 15.12),
HLT is not in NP. HLT is also not in P, so it is in P.

Our ultimate goal is to find problems that are in NP but not in P. That is,
they are not in P, but are only slightly outside of P since they are in NP. This
section identifies “hardest” problems in NP, which are the best candidates
for languages that are in NP but not in P. In overview:

1. We define polynomial-time mapping reductions and relation A ≤p B
where, if A ≤p B and B ∈ P then A ∈ P. Intuitively, you can think of
A ≤p B as saying that B is at least as hard as A (in our new two levels
of difficulty P and P).

2. We define a problem to be NP-complete if it is among the hardest
problems in NP. That is, it must be in NP and it must be at least as
hard as every other problem in NP.

3. Section 17 identifies some NP-complete problems. In this section, we
look at the consequences of a problem being NP-complete.
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16.2 Polynomial-Time Mapping Reductions

BIG IDEA: Polynomial-time mapping reductions are a special case of
mapping reductions that give a closer relationship between problems than
the mapping reductions that we saw earlier.

Definition 16.1. Suppose that A and B are languages (decision problems).
A polynomial-time mapping reduction from A to B is a function f where

(a) f is computable in polynomial time.

(b) For every string x, x ∈ A↔ f(x) ∈ B.

Definition 16.2. We say that A ≤p B if there exists a polynomial-time
mapping reduction from A to B.

The only difference between a polynomial-time mapping reduction and the
mapping reductions defined in Section 11 is the requirement that f must not
merely be computable, but must be computable in polynomial time. It should
come as no surprise that polynomial-time mapping reductions have properties
that are similar to unrestricted mapping reductions, but with respect to P
and P rather than with respect to computable and uncomputable problems.

Theorem 16.3. If A ≤p B and B ∈ P then A ∈ P.

Proof. Suppose that A ≤p B and B ∈ P . Let f(x) be a mapping reduction
from A to B. The following program a(x) tells whether x ∈ A in polynomial
time.

"{a(x):
y = f(x)
if y ∈ B

return 1
else

return 0
}"
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1. The program correctly tells whether x ∈ A because x ∈ A ↔ f(x) ∈
B.

2. Because f(x) is a polynomial-time mapping reduction, step

y = f(x)

can be done in polynomial time (say, nk) in the length n of x. Since
B ∈ P , test

y ∈ B

can be done in polynomial time (say, mj) in the length m of y. But we
need to know what that is in terms of n. How long can y be? Since
f(x) runs in time nk, it only has time to write down nk symbols. So
m ≤ nk and testing whether y ∈ B can be done in time (nk)j = nkj.
That is polynomial time in the length n of x.

Corollary 16.4. If A ≤p B and A 6∈ P then B 6∈ P.

Proof. Use Theorem 16.3 and tautology

(p ∧ q)→ r ↔ (p ∧ ¬r)→ ¬q.

♦

Theorem 16.5. If A ≤p B and B ≤p C then A ≤p C. That is, relation ≤p

is transitive.

Proof. Suppose that f(x) is a polynomial-time mapping reduction from A
to B and g(y) is a polynomial-time mapping reduction from B to C. By the
definition of a mapping reduction, for every x and y,

x ∈ A ↔ f(x) ∈ B (1)

y ∈ B ↔ g(y) ∈ C (2)

Define h(x) = g(f(x)). Notice that

x ∈ A ↔ f(x) ∈ B by (1)

↔ g(f(x)) ∈ C by (2)

↔ h(x) ∈ C by the definition of h(x)
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Also, h(x) can be computed in polynomial time. If f(x) is computable in
time O(nk) and g(y) is computable in time O(nj) then h(x) = g(f(x)) can
be computed in time O(njk) by an argument similar to the one in the proof
of Theorem 16.3.

16.3 Definition of an NP-Complete Problem

BIG IDEA: We can identify problems that are among the most difficult
problems that are in NP.

Suppose that you want to find the tallest person t in a room. The first
requirement, of course, is that person t must be in the room. The second is
that person t must be at least as tall as every other person in the room.

Similarly, a decision problem A is a hardest problem in NP if A is in NP and
A is at least as hard as every other problem in NP. A hardest problem in NP
is called an NP-complete problem.

Definition 16.6. Suppose that A is a language. Say that A is NP-complete
if

(a) A ∈ NP

(b) For every language X ∈ NP , X ≤p A.

Since A is in NP, the second condition says that A is as hard as every problem
in NP, including A itself. That is okay: A ≤p A is clearly true. A is at least
as hard as itself.

16.4 Consequences of NP-Completeness

It is not obvious that there exists an NP-complete problem. In Section 17,
we will see some problems that are provably NP-complete. But right now,
let’s ask what NP-completeness tells us about a problem.

Our goal is to identify problems that are in NP but not in P. But nobody
knows whether there exist any problems that are in NP that are not in P!
Clearly, NP-completeness does not take us to our goal.
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But suppose, for the sake of argument, that it turns out that P 6= NP, and
there is at least one language D in NP − P. Also, suppose that problem
E is NP-complete. Since D ∈ NP, it must be the case that D ≤p E. (All
languages in NP polynomial-time reduce to an NP-complete problem.) Since
D 6∈ P, by Corollary 16.4, E 6∈ P . We have just proved the following.

Theorem 16.7. If P 6= NP and E is NP-complete then E 6∈ P .

On the other hand, what if P = NP? By definition, an NP-complete problem
is in NP, so if P = NP, then an NP-complete problem is also in P. That
does not mean the problem is not NP-complete. It just means that NP-
completeness is not interesting.

It is widely conjectured that P 6= NP. But nobody knows if the conjecture
is true.

Conjecture 16.8. P 6= NP.

What would happen if someone finds a polynomial-time algorithm for an
NP-complete problem? The following theorem tells you.

Theorem 16.8. If E is NP-complete and E ∈ P then P = NP.

Proof. Suppose X is an arbitary problem in NP. Since E is NP-complete,
X ≤p E. By Theorem 16.3, since X polynomial-time reduces to a problem
that is in P, X is also in P.

So, if the conditions stated in Theorem 16.8 are true, then every problem in
NP is also in P. That is NP ⊆ P. Since P ⊆ NP (Theorem 15.13), P = NP.

♦

So, if you are so inclined, you know what would be involved in proving
that Conjecture 16.8 is wrong. Just find a polynomial-time algorithm for a
problem that is known to be NP-complete. But be careful! Every year, a
few people have tried to do exactly that. But their algorithms either do not
run in polynomial time or do not work.
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17 Examples of NP-Complete Problems

17.1 SAT

Section 15.4 defines the Satisfiability Problem for Propositional Logic (SATPL).
We have seen that SATPL is in NP, and noticed in (Section 14) that SATPL
appears to be difficult to solve.

Here, we look at a restriction of that problem to clasual propositional for-
mulas. (The restriction can only make the problem easier, if anything.)

Definition 17.1. A literal is either a propositional variable or its negation.
We will use lower-case letters such as x, y and z as propositional variables.
Rather than writing ¬y to indicate negated variable y, we write y. Literal x
is a positive literal and y is a negative literal .

Definition 17.2. A clause is a disjunction (∨) of one or more literals. For
example, x ∨ z ∨ y is a clause. A literal by itself is a clause with just one
literal.

Definition 17.3. A clausal formula is a conjunction (∧) of one or more
clauses. For example, (x) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) is a clausal formula. There
can be just one clause.

Definition 17.4. SAT is the following decision problem.

Input. A clausal propositional formula φ.
Question. Is φ satisfiable?

For example, is (x) ∧ (y ∨ z) ∧ (x ∨ y ∨ z) satisfiable? Of course: choose x, y
and z all to be true. It is easy to check whether short propositional formulas
are satisfiable. It is the long formulas that present difficulties!

Theorem 17.5. SAT ∈ NP.

Proof. Theorem 15.5 shows that SATPL is in NP. But SAT is a restriction
of SATPL. The evidence checker for SATPL also works for SAT.

♦

Cook and Levin independently showed that SAT is NP-complete. The proof
is too long for this course, so we will need to accept it as proved.
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Theorem 17.6. (Cook/Levin Theorem) SAT is NP-complete.

That gives us evidence (but not a proof, since we don’t know whether P 6=
NP) that there is no polynomial-time algorithm for SAT.

17.2 Proving NP-Completeness

SAT is proved NP-complete using a difficult kind of reduction called a generic
reduction. If all you know about X is that X ∈ NP, you can ask someone to
give you an evidence checker for X. The generic reduction from X to SAT
converts that evidence checker into a propositional formula. You can think
of it as building a simple computer from logic gates that do nots, ands and
ors.

But we don’t need to do a generic reduction for every proof of NP-completeness.

Theorem 17.7. Suppose that language B ∈ NP, A is NP-complete and
A ≤p B. Then B is NP-complete.

Proof. B ∈ NP, so it suffices to show that X ≤p B for every language
X ∈ NP. Since A is NP-complete, we know that X ≤p A for every language
X ∈ NP. But A ≤p B and relation ≤p is transitive (Theorem 16.4), so
X ≤p B for every language X ∈ NP.

♦

17.3 3-SAT

We can restrict the satisfiability problem further.

Definition 17.8. A propositional formula is in 3-clausal form if it is in
clausal form and has exactly 3 literals per clause. For example, (x∨ y ∨ z)∧
(y ∨ z ∨ w) is in 3-clausal form. A propositional formula in 3-clausal form is
called a 3-clausal propositional formula.

Definition 17.9. 3-SAT is the following decision problem.

Input. A 3-clausal propositional formula φ.
Question. Is φ satisfiable?
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Theorem 17.10. 3-SAT is NP-complete.

Proof. Clearly, 3-SAT is in NP. (Use the same evidence checker as for
SATPL.) So, by Theorem 17.7, it suffices to reduce SAT to 3-SAT.

We need a polynomial-time algorithm that takes a clausal formula φ and
builds a 3-clausal formula φ′ such that φ is satisfiable if and only if φ′ is
satisfiable. Our algorithm will convert each clause of φ separately.

Clauses that already have 3 literals are left alone. Clauses with fewer than 3
literals are easy to deal with by duplicating one or more of the literals. For
example, clause (A ∨B) is equivalent to (A ∨ A ∨B).

That only leaves long clauses , which have more than 3 literals. As long as
there is at least one long clause, we find one with n > 3 literals and replace it
by a clause that has n− 1 literals, plus a clause with 3 literals. By repeating
that, we can get rid of all of the long clauses. It is just a matter of ensuring
that each step preserves satisfiability.

Suppose that φ contains clause

C = (`1 ∨ `2 ∨ · · · ∨ `n)

where n > 3. Create a new variable u and replace C by pair of clauses

C ′ = (`1 ∨ · · · ∨ `n−2 ∨ u) ∧ (u ∨ `n−1 ∨ `n)

yielding new formula φ1. We need to show that φ1 is satisfiable if and only
if φ is satisfiable, showing that the modification of φ preserves satisfiability.

Claim 1. If φ1 is satisfiable then φ is satisfiable. In fact, every truth-value
assignment that satisfies φ1 also satisfies φ.

Proof of Claim 1. Suppose φ1 is satisfiable. Choose a truth-value assign-
ment a that makes φ1 true. That assignment must make all of the clauses
other than C in φ true, since those clauses also occur in φ1. We just need to
argue that assignment a also makes clause C true. Be sure to notice that,
because a makes all clauses in φ1 true, it makes both clauses in C ′ true.

Suppose a(u) = F. Then, because a makes clause (`1 ∨ · · · ∨ `n−2 ∨u) true, a
must make at least one of `1, . . . , `n−2 true. But that means a makes clause
C true.

Suppose that a(u) = T. Then, because a makes clause (u ∨ `n−1 ∨ `n) true,
a makes at least one of `n−1 and `n true. Again, a makes clause C true.
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Claim 2. If φ is satisfiable then φ1 is satisfiable.

Proof of Claim 2. Suppose that φ is satisfiable, and choose a truth-value
assignment a that makes φ true. Clause C must have at least one true literal.

If a makes `i true where i ≤ n− 2, then extend a by adding u = F. The new
truth-value assignment makes clause (`1 ∨ · · · ∨ `n−2 ∨ u) true because `i is
true, and it makes clause (u ∨ `n−1 ∨ `n) true because u = F.

If a makes `i true where i > n− 2, then extend a by adding u = T. You can
check that both clauses of C ′ must be true.

♦

17.4 The Vertex Cover Problem

Recall from Section 15.4.2 that a vertex cover of a simple graph is a set C
of vertices so every edge is incident on at least one vertex in C. The Vertex
Cover Problem VCP is the following decision problem.

Input. A simple graph G and a positive integer k.
Question. Does there exist a vertex cover C of G where |C| ≤ k?

It is worth asking whether there is an obvious polynomial-time algorithm for
VCP. One idea is to use a greedy algorithm, which tries to optimize globally
by optimizing locally. Since we want to select as few vertices as possible
to cover all of the edges, it makes sense to start by selecting a vertex with
highest degree, since it covers as many edges as possible with the first pick.
After that, remove the selected vertex and all of the edges that it covers, and
repeat, again selecting a vertex with the highest degree.

That algorithm seems appealing, but does it work? Look at graph G1 in
Figure 17.1. The diagram shows a vertex cover of G1 of size 5, but G1 also
has a vertex cover of size 4. (Can you find it?) G1 has a vertex of degree 4,
and all other vertices have degree 2 or 3. But the degree 4 is not part of any
smallest vertex cover of G1! If you are trying to determine whether G1 has a
vertex cover of size at most 4, you will be led astray by selecting the degree
4 vertex. Something is wrong with the greedy Vertex Cover algorithm.

It is tempting to try to patch the greedy algorithm. But is that worthwhile?
The following theorem shows that it is a waste of time.
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Theorem 17.11. VCP is NP-complete.

If the conjecture P 6= NP is true then there does not exist a polynomial-time
algorithm for VCP. Even if the conjecture is wrong, finding a polynomial-
time algorithm for VCP is as difficult as proving that P = NP, since the
existence of such an algorithm implies P = NP.

Proof of Theorem 17.11 Section 15.4.2 shows that VCP is in NP. We
only need to reduce a known NP-complete problem to VCP. Let’s show that
3-SAT ≤p VCP.

We need a polynomial-time algorithm that takes a propositional formula φ in
3-clausal form and builds a pair consisting of a simple graph G and a positive
integer k, where φ is satisfiable if and only if G has a vertex cover of size at
most k.

The first step is construction of G. There are three parts. Part 1 consists of
a pair of vertices for each variable that occurs in φ, which we call a vertex
gadget . If x is a variable, add the following, where one vertex is labeled x
and the other is labeled x.

��������x x

Part 2 consists of three vertices for each clause of φ, all connected to one
another and labeled by the three literals in the clause, which we call a clause
gadget . For clause (x ∨ y ∨ z), we add

����
����

�����
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T
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TT

x z

y

Part 3 does not add any vertices, but adds edges between part 1 vertices and
part 2 vertices. Specifically, each part 2 vertex is connected to the part 1
vertex that has the same label.

Here is an example. Suppose

φ = (x ∨ y ∨ z) ∧ (y ∨ z ∨ w).

Then graph G looks like this:
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That finishes the description of G. Suppose that φ has v variables and c
clauses. Any vertex cover of G will need to have size at least v + 2c, one to
cover each vertex gadget and two to cover each clause gadget. Let’s choose
k = v + 2c, not leaving any room for extra vertices in the vertex cover.

We need to prove that G has a vertex cover of size v + 2c if and only if φ is
satisfiable. Let’s do that in two parts, proving the ’if’ and the ’only if’ parts
separately.

Claim 1. If φ is satisfiable then G has a vertex cover of size v + 2c.

Proof of Claim 1. Suppose φ is satisfiable, and let a be a truth-value
assignment that makes φ true. Here is how to select a vertex cover of G of
size v + 2c.

(a) For each variable x, if a(x) = T then select the vertex gadget-vertex
labeled x. Otherwise, select the vertex-gadget vertex labeled x. That
puts one vertex for each vertex gadget in the vertex cover, which covers
the edges within vertex gadgets.

(b) For each clause C = (`1 ∨ `2 ∨ `3), find a literal `i that truth-value
assignment a makes true. Select the clause gadget vertices that corre-
spond to the other two literals, leaving the vertex labeled `i unselected.
That covers all edges within clause gadgets.

There is no room to select any more vertices, so the part 3 edges between
clause gadgets and vertex gadgets need to be covered by the vertices that have
already been selected. The unselected vertex u in a clause gadget corresponds
to a true literal `i (under truth-value assignment a). A part 3 edge connects
u to a vertex-gadget vertex v labeled `i, and, since `i is true, vertex v was
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selected, and edge {u, v} is covered by v. No more vertices need to be added.

Claim 2. If G has a vertex cover of size v + 2c then φ is satisfiable.

Proof of Claim 2. Suppose G has a vertex cover S of size v+ 2c. We know
that S must select exactly one vertex from each vertex gadget and exactly
two vertices from each clause gadget. Define truth-value assignment a so that
a(x) = T if the vertex-gadget vertex labeled x is in S, and choose a(x) = F
if the vertex-gadget vertex labeled x is in S.

Consider a clause gadget C. It must have one vertex u that is not in vertex
cover S. Suppose u is labeled by literal `. There is an edge in G between
u and a vertex-gadget vertex v that is also labeled `. Since S is required to
cover all edges, and S does not contain u, S must contain v.

But truth-value assignment a has been defined so that literal ` is true; that
is, if v is labeled x then a(x) = T, and if v is labeled x then a(x) = F, making
x true. Therefore, the clause of φ that corresponds to clause gadget C has a
true literal, namely `.

The two claims show that the algorithm described above is a mapping re-
duction from 3-SAT to VCP. (It should be obvious that the algorithm runs
in polynomial time.)

♦

17.5 The Independent Set Problem

Definition 17.12. Suppose G = (V,E) is a simple graph. An independent
set of G is a set S ⊆ V such that no two members of S are connected by an
edge. That is, if u and v are different members of S, then{u, v} 6∈ E.

Definition 17.13. The Independent Set Problem (ISP) is the following
decision problem.

Input. A simple graph G = (V,E) and a positive integer k.
Question. Does G have an independent set of size at least k?
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Figure 17.1 Graph G1. The solid vertices are an independent set of G1

and the empty circles are a vertex cover of G1.

Look at graph G1 in Figure 17.1. Some vertices are solid black and some are
circles. Notice that the solid vertices are a vertex cover of G and the empty
circles are an indenpendent set of G. Is that a coincidence? Think about it.

Theorem 17.14. Suppose G = (V,E) is a simple graph and S ⊆ V . S is a
vertex cover of G if and only if S is an independent set of G.

Proof. Suppose that G = (V,E). Saying that S is a vertex cover of G is
equivalent to the following logical statement.

∀u∀v({u, v} ∈ E → (u ∈ S ∨ v ∈ S)).

Using the law of the contrapositive, that is equivalent to

∀u∀v(¬(u ∈ S ∨ v ∈ S)→ {u, v} 6∈ E).

Using DeMorgan’s law and the definition of S, that is equivalent to

∀u∀v((u ∈ S ∧ v ∈ S)→ {u, v} 6∈ E).

That is exactly what it means for S to be an independent set of G.

♦

Theorem 17.15. VCP ≤p ISP.

Proof. Suppose that G has n vertices. For any set of vertices S of G,
|S| = n−|S|. That means f(G, k) = (G, n−k) is a polynomial-time reduction
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from VCP to ISP, since

(G, k) ∈ VCP ↔ G has a vertex cover of size at most k

↔ G has an independent set of size at least n− k
↔ (G, n− k) ∈ ISP

♦

Corollary 17.16. ISP is NP-complete.

Proof. It is clear that ISP ∈ NP. Theorem 17.15 shows that known NP-
complete problem VCP polynomial-time reduces to ISP.

♦

17.6 The Clique Problem

Another NP-complete problem about graphs is the Clique Problem.

Definition 17.17. Suppose that G = (V,E) is a simple graph. A set S ⊆ V
is a clique if every pair of vertices in S are adjacent. That is, S is a clique if
for all pairs of different vertices u and v in S, {u, v} ∈ E.

Definition 17.18. The Clique Problem (CP) is the following decision prob-
lem.

Input. A simple graph G and a positive integer k.
Question. Does G have a clique of size at least k?

Definition 17.19. Suppose G = (V,E) is a simple graph. Then G = (V,E)
is the complement of G, formed by complementing the set of edges. That is,
G has an edge between different vertices u and v if and only if G does not
have an edge between u and v.

The following Theorem 17.20 is immediate from the definitions of indepen-
dent sets and cliques.

Theorem 17.20. SupposeG = (V,E) is a simple graph. S is an independent
set of G if and only if S is a clique of G.
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Theorem 17.21. ISP ≤p CP

Proof. By Theorem 17.20, function f(G, k) = (G, k) is a polynomial-time
reduction from ISP to CP.

♦

17.7 The Subset Sum Problem

The Subset Sum Problem is a generalization of the Partition Problem that
we looked in Section 15.

Definition 17.22. The Subset Sum Problem (SSP) is the following decision
problem.

Input. A list x1, . . . , xn of positive integers and a positive integer K.
Question. Does there exist an index set I ⊆ {1, . . . , n} so that∑

i∈I
xi = K?

We will show that SSP is NP-complete by showing that SSP is in NP and
that 3-SAT ≤p SSP.

Theorem 17.23. SSP ∈ NP.

Proof. The question in the definition of SSP is a question of existence. That
suggests using I, the thing whose existence is questioned, as the evidence.
Here is a polynomial-time evidence checker for SSP.

Evidence checker for SSP

Input. List x1, . . . , xn of positive integers and posi-
tive integer K

Evidence. Index set I ⊆ {1, . . . , n}
Requirement.

∑
i∈I

xi = K?

♦

Theorem 17.24. 3-SAT ≤p SSP.
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w z y x c1 c2 c3
Nx: 1 1 0 0
Nx: 1 0 0 1
Ny: 1 0 1 0 0
Ny: 1 0 0 1 0
Nz: 1 0 0 0 1 1
Nz: 1 0 0 1 0 0
Nw: 1 0 0 0 0 0 1
Nw: 1 0 0 0 0 1 0
P1,1: 1 0 0
P1,2: 1 0 0
P2,1: 0 1 0
P2,2: 0 1 0
P3,1: 0 0 1
P3,2: 0 0 1
K: 1 1 1 1 3 3 3

Figure 17.2. List L consists of Nx and Nx for each variable x plus Pi,1

and Pi,2 for each clause ci. Numbers are written in base 10. Notice that
the sum can never involve a carry since there are no more than five 1s in
any column.

Proof. Like the proof of Theorem 17.11, showing that 3-SAT ≤p VCP,
this proof requires some thought and some gadgetry. A polynomial-time
reduction from 3-SAT to SSP is a polynomial-time computable function
f(φ) = (L,K) where φ is a propositional formula in 3-clausal form, L = x1,
. . . , xn is a list of positive integers and K is a positive integer so that φ is
satisifiable if and only if (L,K) ∈ SSP.

Writing a program for the reduction is not very informative. It is much easier
to understand the reduction from an example. Suppose that φ is

(x ∨ y ∨ z) ∧ (y ∨ z ∨ w) ∧ (w ∨ x ∨ z)

with clauses c1, c2 and c3. The result (L,K) of f(φ) is shown in Figure 17.2.
List L is broken into two parts.

Part 1 of list L has two numbers Nx and Nx for each variable x. Think of
those numbers written in base 10, with each number having two sections, the
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variable section and the clause section. The variable section has a column
for each variable and the clause section has a column for each clause.

1. In the variable section, Nx and Nx each have a 1 in the column for x,
with all other digits in the variable section being 0.

2. In the clause section, Nx has a 1 in column ci if x occurs in clause ci,
and it has a 0 in column ci otherwise. Similarly, Nx has a 1 in column
ci if x occurs in clause ci, and a 0 in column ci otherwise.

Part 2 of list L has two numbers Pi,1 and Pi,2 for each clause ci, which both
contain only a 1 in the column that corresponds to ci, as shown in Figure
17.2. They are used as padding.

We need to show that φ is satisfiable if and only if there is a way to select
numbers from list L whose sum is exactly K. As before, we prove the ’if’
part and the ’only if’ part separately.

Claim 1. If φ is satisfiable then there is a way to select numbers from list
L whose sum is K.

Proof of Claim 1. Suppose that a is a truth-value assignment that makes
φ true. It tells which numbers to select to make a sum of K. First, select
a true literal from each clause. If literal x is selected, put Nx into the list
of selected numbers. If literal x is selected, put Nx into the list of selected
numbers. If neither x nor x is selected, it does not matter; put Nx into the
list of selected numbers.

Notice that the sum of the selected numbers has exactly one 1 in each column
of the variable section, so the variable section of the sum K is correct.

Now we need to make sure the section of K consisting of 3’s is correct.
Because each clause contains a true literal, there must be at least one 1 in
each clause column. But the total number of 1s in a single clause column
in part 1 can be at most 3 since each clause contains 3 literals. If a clause
column has one 1, then select both of the padding (part 2) numbers for that
column to make a total of exactly 3. If there are two 1’s, select one of the
padding numbers. If there are three 1’s, do not select any of the padding
numbers for that clause.

The sum of the selected numbers is exactly K.
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Claim 2. If it is possible to select numbers from list L whose sum is K then
φ is satisfiable.

Proof of Claim 2. Because each variable column must sum to 1, exactly
one of Nx and Nx must have been chosen for each variable x. Define truth-
value assignment a so that a(x) = T if Nx is selected and a(x) = F if Nx is
selected.

The selected numbers must sum to 3 in each clause column. At most two 1s
in column i can come from padding numbers. The third must come from Nx,
where x occurs in clause ci, or from Nx where x occurs in clause ci. That
means ci contains a true literal under truth-value assignment a.

The two claims show that the algorithm described above is a mapping re-
duction from 3-SAT to SSP. It should be obvious that the algorithm runs in
polynomial time.

♦

17.8 Graph Coloring Problems

Let’s look at some known NP-complete problems without proving them NP-
complete.

Definition 17.25. Suppose that G is a simple graph and k is a positive
integer. Say that G is k-colorable if it is possible to color each vertex of G
with one of k colors so that no two adjacent vertices have the same color.

Definition 17.26. The Graph Coloring Problem is the following decision
problem.

Input. A simple graph G and a positive integer k.
Question. Is G k-colorable?

The Graph Coloring Problem is clearly in NP. The question asks whether
there exists a way to color the vertices of G so that no two adjacent vertices
have the same color. The obvious evidence to request is the coloring.
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Evidence checker for Graph Coloring

Input Simple graph G and positive integer k.

Evidence Assignment A of one of k colors to each ver-
tex of G.

Requirement Every edge of G connects two vertices that
are assigned different colors in color assign-
ment A.

If you try to color some graphs by hand, you can get an idea of how difficult
Graph Coloring can be. The Graph Coloring Problem is known to be NP-
complete. In fact, it is NP-complete even if k is fixed at 3.

Definition 17.27. The 3-Coloring Problem is the following decision prob-
lem.

Input. A simple graph G.
Question. Is G 3-colorable?

Graph Coloring is so difficult, it can even be restricted further and remain
NP-complete. A graph is planar if it can be drawn in the plane (on a piece
of paper, if you like) so that no two edges cross one another.

Definition 17.28. The Planar 3-Coloring Problem is the following decision
problem.

Input. A planar simple graph G.
Question. Is G 3-colorable?

The Planar 3-Coloring Problem is NP-complete. But that does not mean
that all graph coloring problems are NP-complete. For example, 2-coloring
is easy. (Try an example.) Also, if G is known to be a planar graph, then
4-coloring is trivial: the answer is always yes, by the following.

Theorem 17.29. (The 4-Color Theorem) Every planar graph is 4-
colorable.

17.9 Hamilton Cycles and Hamilton Paths

Definition 17.30. Suppose that G is a simple graph. A simple cycle in G is
a cycle that does not contain any vertex more than once. A Hamilton Cycle

150



is a simple cycle that contains every vertex.

Not every graph has a Hamilton cycle. You should be able to find a graph
that has a Hamilton cycle and another that does not.

Definition 17.31. The Hamilton Cycle Problem is the following decision
problem.

Input. A simple graph G.
Question. Does G have a Hamilton cycle?

Imagine that G has been drawn on paper (possibly with edges crossing). The
Hamilton Cycle Problem asks whether it is possible to draw a cycle, following
the edges, that hits every vertex exactly once, without lifting your pencil off
the paper.

It is easy to show that the Hamilton Cycle Problem is in NP. The obvious
evidence is a Hamilton cycle.

Evidence checker for Hamilton Cycle

Input Simple graph G with n vertices.

Evidence Sequence v1, . . . , vn of vertices of G.

Requirement v1, . . . , vn−1 contains every vertex exactly
once, v1 = vn and for i = 1, . . . , n − 1,
{vi, vi+1} is an edge of G.

The Hamilton Cycle Problem is known to be NP-complete. A related prob-
lem, also NP-complete, is the Hamilton Path Problem.

Definition 17.32. Suppose that G is a simple graph. A simple path in G is
a path that does not contain any vertex more than once. A Hamilton Path
is a simple path that contains every vertex (exactly once).

Definition 17.33. The Hamilton Path Problem is the following decision
problem.

Input. A simple graph G.
Question. Does G have a Hamilton path?
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17.9.1 Euler Cycles

A problem that is at least superficially related to the Hamilton Cycle Prob-
lem is the Euler Cycle Problem. (Leonard Euler’s last name is pronounced
“Oiler”.)

Definition 17.34. Suppose that G is a simple graph. An Euler Cycle in G is
a cycle that uses each edge exactly once. (The cycle can contain a particular
vertex several times.)

Not every graph has an Euler cycle. You should be able to find a graph that
has an Euler cycle and another that does not.

Definition 17.35. The Euler Cycle Problem is the following decision prob-
lem.

Input. A simple graph G.
Question. Does G have an Euler cycle?

How difficult is it to determine whether a graph contains an Euler cycle? It
is easy to see that the Euler Cycle Problem is in NP.

Evidence checker for Euler Cycle

Input Simple graph G with n vertices.

Evidence Sequence v1, . . . , vn of vertices of G.

Requirement v1 = vn, for i = 1, . . . , n− 1, {vi, vi+1} is an
edge of G (so v1, . . . , vn is a cycle) and cycle
v1, . . . , vn uses each edge exactly once.

So we have an upper bound on the difficulty of solving the Euler Cycle Prob-
lem: it is in NP, so it is, to within a polynomial, no worse than SAT. But
that is not a lower bound . It might be that the Euler Cycle Problem is easy
to solve.

And in fact, it is! Graph G has an Euler cycle if and only if every vertex has
even degree. That is easy to check. Not only is the Euler Cycle Problem in
P, but it is solvable in time O(n).

There is a lesson in that. You cannot inspect a problem and conclude, based
on its similarity to another problem, that it is an easy or a difficult problem.
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To show that a problem is in P, find a polynomial-time algorithm for it, and
make sure that the algorithm works. To show that a problem is NP-complete,
show that it is in NP and that a known NP-complete problem reduces to it
in polynomial time. There are no shortcuts.
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18 Beyond NP

The theory of NP-completess is a bedrock of computer science because there
are so many NP-complete problems, and they crop of everywhere. There
are NP-complete problems from mathematics, the theory of databases, the
theory of compilers and even from politics.

But even though NP-completeness is central, there is more to the world than
that. This section looks at some other classes of problems.

18.1 Co-NP and the Validity Problem

We started looking at difficult problems in Section 14.3 with the Validity
Problem for Propositional Logic (VALIDPL). But we have not said anything
more about it yet. We have not shown that it is NP-complete, nor have we
shown that it is in P.

There is a good reason for that. The validity problem is conjectured to be
neither in P nor NP-complete. That is a consequence of the asymmetry of
NP: if A ∈ NP, then there are short, easily checkable proofs that things are
in A, but there is no requirement that there are short, easily checkable proofs
that things are not in A.

But VALIDPL has short, easily checkable proofs of nonmembership. To
show that φ is not valid, show that ¬φ is satisfiable by finding a truth-value
assignment that makes ¬φ true.

Let’s define SATPL to be the set of propositional formulas that are not
satisfiable. Then f(φ) = ¬φ is a polynomial-time reduction from VALIDPL
to SATPL. The same function is a polynomial-time reduction from SATPL
to VALIDPL. So VALIDPL is equivalent in difficulty to SATPL.

To deal with VALIDPL, we need a class of languages that are complements
of languages that are in NP:

Co-NP = {X | X ∈ NP}.

Pay close attention to the definition of Co-NP. Co-NP is not the complement
of NP.
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Now we can define the class of hardest problems in Co-NP in a way that is
analogous to the way NP-complete problems are defined. Say that a language
L is Co-NP-complete provided L ∈ Co-NP and X ≤p L for every language
X ∈ Co-NP.

It is easy to show that A is NP-complete if and only if A is Co-NP-complete,
for every language A. For example, since VALIDPL is equivalent to SATPL,
VALIDPL is Co-NP-complete.

It is also easy to show that, if P 6= NP, then a Co-NP-complete problem has
no polynomial-time algorithm. (Imagine, for example, a polynomial-time
Turing-reduction from SATPL to VALIDPL. That shows that VALIDPL ∈
P→ SATPL ∈ P , or, by taking the contrapositive, SATPL 6∈ P → VALIDPL 6∈
P .)

18.2 NP Intersect Co-NP and Factoring

We know that P ⊆ NP. By symmetry, P ⊂ Co-NP. So P ⊂ NP ∩ Co-NP.

In Section 13.3 we saw co-partially computable languages and found that
the intersection of the class of partially computable sets with the class of co-
partially computable sets is exactly the class of computable sets. An obvious
question is whether an analogous thing happens here: Is P = NP ∩ Co-NP?

Surprisingly, it is conjectured that P 6= NP ∩ Co-NP.

Conjecture 18.1 P 6= (NP ∩ Co-NP).

What would lead people to make Conjecture 18.1? There must be some deci-
sion problem that is conjectured to be in NP∩Co-NP but not in P . And there
is: factoring integers. Quick, what are the prime factors of 109,938,432,277?

Actually, the problem of factoring a given integer cannot be in NP ∩Co-NP
because it is not a decision problem; the result is a list of factors. But there
is a decision problem that is has the same level of difficulty.

Definition 18.2. FACTOR is the following decision problem.

Input. Two positive integers x and k.
Question. Does there exist a factor y of x where 1 < y < k?

If you have a polynomial-time algorithm that finds the factors of an inte-
ger then it is easy to decide FACTOR. And if you have a polynomial-time
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algorithm for FACTOR then you can find the smallest factor of an integer
using binary search. Having found the smallest factor, you divide x by that
factor and continue finding factors, stopping when the number that you have
is prime. (As mentioned in Section 14, there is a known algorithm that
determines whether a given integer is prime in polynomial time.)

There is no known polynomial-time algorithm for FACTOR and FACTOR
is conjectured to be in NP ∩ Co-NP but not in P.

18.3 Public Key Cryptograpy

Cryptographic systems are based on keys. To encipher a message you use
the encipher key, and to decipher a message you use the associated decipher
key. A person who has the decipher key is said to decipher a message. A
person who attempts to do the same job without the benefit of the decipher
key is said to decrypt the message.

Traditional cryptography is based on the idea that someone attempting to
decrypt an enciphered message does not have enough information to do so.
The standard traditional cryptosystem is a one-time pad, where a randomly
chosen sequence of bits called the pad is used as a key. To encipher a message
(a sequence of bits), you do a bitwise exclusive-or of the message with the pad.
To decipher a message, you also do a bitwise exclusive-or of the enciphered
message with the pad, which gives the original message back. The pad must
only be used once. Using it more than once risks giving away information to
an adversary.

Public key cryptography takes a different viewpoint. The encipher and deci-
pher keys are different, and the strength of the system is based on the idea
that someone trying to decrypt a message does not have enough time to
do that. And that depends on the problem of decrypting a message being
computationally difficult.

Definition 18.3. A public key cryptosystem is described by two functions
E(k, x) andD(j, y) where k is a public encipher key and j is a private decipher
key. Functions E(k, x) and D(j, y) must have the following properties.

1. For every x in a limited range, D(j, E(k, x)) = x and E(k,D(j, x)) = x.
That is, deciphering an enciphered message gives the original message,
and enciphering a deciphered message also gives the original message.
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2. There is a polynomial-time algorithm to compute E(k, x) and another
to compute D(j, y).

3. The decryption function C(k, y) is defined to take the encipher key k
and an enciphered message y and yield a value x such that E(k, x) = y;
C(k, y) decrypts without the benefit of j; it is only told k. There should
be no polynomial-time algorithm that computes C(k, y).

Because the encipher key k is public, we write C(y) rather than C(k, y).
That slightly simplifies what follows.

The strength of a public key cryptosystem is tied to the (at least apparent)
computational difficult of computing C(y).

Several public key cryptosystems are known, and it is not our concern here
to describe one. Rather, let’s ask whether a public-key cryptosystem exists.
Assume that function pair (E(k, x), D(j, y)) is such a cryptosystem. For
simplicity, assume that messages (x and y) are integers. Text can always be
encoded using integers.

Consider the following decision problem DECRYPT determined by the de-
cryption function C(y).

DECRYPT = {(y, i) | C(y) < i}.

DECRYPT must be in NP. As evidence, use the decipher key j. First com-
pute x = D(j, y), then compute z = E(k, x). Accept j as evidence that
(y, i) ∈ DECRYPT provided z = y and x < i. Requirement z = y tells
you that j is the correct decipher key and requirement x < i tells you that
C(y) < i.

DECRYPT must also be in Co-NP. The complement of DECRYPT is equiv-
alent to language {(y, i) | D(y) ≥ i}, and a similar evidence checker works
for that.

So DECRYPT is in NP ∩ Co-NP. But if DECRYPT is in P then there is
a polynomial-time algorithm to compute C(y). Simply use binary search to
search for the smallest i such that D(y) < i. Then C(y) = i− 1. That leads
to the following conclusion.

Theorem 18.4. A public key cryptosystem can only exist if P 6= NP ∩
Co-NP.
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It is no accident that public key cryptosystems are based on factoring or on
other problems that are in NP ∩ Co-NP.

18.4 Polynomial Space

PSPACE is the class of all decision problems that can be solved using O(nk)
bits of memory for some fixed k, where n is the length of the input.

It is known that NP ⊆ PSPACE and Co-NP ⊆ PSPACE, and it is con-
jectured that NP 6= PSPACE (and Co-NP 6= PSPACE). Polynomial space
allows a lot of room for computations. Typical exponential-time algorithms
only use a polynomial amount of memory.

A PSPACE-complete problem is one of the hardest problems in PSPACE.

Definition 18.5. A decision problem A if PSPACE-complete if

(a) A is in PSPACE and

(b) X ≤p A for every problem X ∈ PSPACE.

Several PSPACE-complete problems are related to two-person games. An
example is Generalized Checkers , defined as follows.

Input. A placement of red and black kings on an n×n checkerboard.
Question. Assuming that it is red’s move, does red have a winning
strategy from the given configuration?

Geography is a game that children can play without any props. A child thinks
of the name of a country (or other chosen category). If the first child selects
Sweden, then the next child must select a country name that begins with N,
the last letter of Sweden. Suppose that child chooses Nepal. Now the next
player must choose a country name that starts with L. Countries cannot be
reused, and the first child who cannot think of a country name loses.

There is a version of Geography that is played on a directed graph. A vertex
is selected as the start vertex s. The first player selects a vertex u where
there is a directed edge from s to u. The second player selects a vertex v
where there is a directed edge from u to v. Play alternates. No vertex that
was previously selected can be selected again.

158



The Generalize Geography decision problem is as follows.

Input. A directed graph G with a selected start vertex.
Question. Does the first player have a winning strategy on the game
of Geography played on G?

Generalize Geography is known to be PSPACE-complete.

In practice, PSPACE-complete problems appear very difficult to solve. Not
only do they appear not to have polynomial-time algorithms, but they do not
appear to have polynomial-time evidence checkers. Even if someone knows
the answer to a particular input of PSPACE-complete problem, he or she
cannot convince you that the answer is correct using a short, easy to check
proof!

It is worth thinking about how you would write an evidence checker for
Generalized Geography. What would the evidence be? The most obvious
evidence that the first player has a winning strategy is the strategy. But
that is really huge! It must not only say what the first player’s first move is,
it must say how the first player responds to each move of the second player.
As the number of moves grows, the strategy grows exponentially in size. An
exponential-size piece of evidence clearly cannot be checked in polynomial
time.

But, even though PSPACE appears to be larger than NP, surprisingly, no-
body knows whether PSPACE = P. Even the huge jump from polynomial
time to polynomial space is not enough for us to demonstrate a separation.
If you want to prove that P 6= NP, you might warm up by proving that
P 6= PSPACE; that ought to be easier.

18.5 Exponential Time

Definition 18.6. EXPTIME is the class of decision problems that are
solvable in time O(2nk

) for some fixed k, where n is the length of the input.

It is known that PSPACE ⊆ EXPTIME, and PSPACE is conjectured to be
a proper subset of EXPTIME.

With EXPTIME, we finally have a provable separation! It is known that
P 6= EXPTIME. So at least one of the subset relations P ⊆ NP ⊆ PSPACE
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⊆ EXPTIME is surely a proper subset relation. Of course, they are all
conjectured to be proper.

There is a notion of an EXPTIME-complete problem, defined in the usual
way as a hardest problem in EXPTIME.

Definition 18.7. A decision problem A is EXPTIME-complete if

(a) A is in EXPTIME and

(b) X ≤p A for every problem X ∈ EXPTIME.

There are EXPTIME-complete problems. There is a typed programming
language called ML. The ML Type Checking problem is as follows.

Definition 18.9. The ML Type Checking Problem is the following decision
problem.

Input. An ML program p.
Question. Is p well-typed (free of type errors)?

The ML Type Checking Problem is known to be EXPTIME-complete. For-
tunately, ML programmers tend not to write programs that are difficult to
type check. But if you want to, you can write a short ML program that will
bring an ML compiler to its knees; in practice, the memory requirements
overwhelm the compiler, and it gives up.
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