
prev next

9 Programs and Computability

9.1 Programs

With this section, we begin to look at what can be computed by general
programs. But what is a general program?

A full definition of a general program is involved and takes us into an area,
automata theory , that we will not explore in this course for lack of time. So
let’s settle for a less-than-rigorous defininition of a program.

Program "{p(x): body}" is a program or function called p that performs
actions indicated by body. In the body, a program says return r to indicate
that the answer is r. Otherwise, the body is written in psuedo-code that you
can imagine has been translated into your favorite programming language.
We use indentation to show program structure.

Technically the input, or parameter, is always a string. But the input might
be an integer, written in base 10. The input might also have more than one
thing encoded in it. For example, input "(25,400)" describes an ordered pair
of integers. So we will allow a program with more than one input, as in
"{q(x, y): . . . }".

Program "{a(x1x2 . . . xn): . . . }" takes a parameter string x = "x1x2 . . . xn";
in the body, xi refers to the i-th character of x.

Some examples are shown later in this section.

9.1.1 A Program Is a String

We write a program in quotes because a program is a string. You create
a program using a text-editor. That point is important for the study of
computability. If there are string constants embedded inside the program,
I will not write \" for the embedded quotes. There should be no confusion
from that.

We refer to program "{p(x): . . . }" a p. Keep in mind that p is both a
program and a string.

1



9.2 Computability

9.2.1 Computable Functions

Definition 9.1. For our purposes, an algorithm is a program that stops and
produces an answer for every input. It is not allowed to loop forever, and is
not allowed to stop without giving an answer.

Definition 9.2. Suppose that Σ and Γ are alphabets and f : Σ∗ → Γ∗ is a
function. Program p computes function f provided, for every string s ∈ Σ∗,
when p is run on input s, it eventually stops and returns string f(s).

Definition 9.3. Function f is computable if there exists a program that
computes f .

9.2.2 Computable Decision Problems

Definition 9.4. Suppose A ⊆ Σ∗ is a language over Σ∗. A program p
computes A provided, for every string s ∈ Σ∗, when p is run on input s, it
eventually stops and returns 1 if s ∈ A and returns 0 if s 6∈ A.

If p computes A, we also say that p solves A, p recognizes A and that p
decides A.

Definition 9.5. If p is an algorithm, define L(p) to be the set of all strings
on which program p stops and returns 1. We say that L(p) is the language
that p accepts.

Definition 9.6. Language A is computable provided there exists a program
that computes A. Equivalently, A is computable if there exists a program
p that stops on every input and where L(p) = A. Computable decision
problems are also said to be decidable.

Note that computability is not defined in terms of what you or I are clever
enough to do. A function or language is computable if there exists a program
that computes it, regardless of whether any human is or will ever be able to
find such a program.

2



9.2.3 The Church/Turing Thesis

Each programming language is a model of computation. Why can we ignore
details like which programming language is chosen (within some limits) in
the definition of a computable problem? Because every sufficiently general
programming language can solve the same problems, as long as you take
away restrictions on the amount of memory that the program can use. That
observation is captured in the Church/Turing Thesis .

BIG IDEA: The Church/Turing Thesis: the class of computable
problems is the same for all sufficiently general models of computation.

You hardly need much to achieve sufficiently general power. A common
model of computation is a Turing machine, whose memory consists of an
infinitely long tape that can store one symbol per cell, and that can only be
read and written using a head that can move to the left and right over the
tape. That model initially appears to be too simple, but it can solve all of the
computational problems that are solvable by other models of computation.

9.2.4 The “Type” of Adjective Computable

A language can be computable. A function that takes a string and yields
a string can be computable. A function that takes a number and yields a
number can be computable.

But a program cannot be computable. It makes no sense to talk about
a computable program. So please don’t ever to that. Make sure that you
know what type of thing you have.

9.3 Examples of Computable Decision Problems

It is easy to come up with computable decision problems.

Theorem 9.7. The empty set is computable.

Proof. Language {} is thought of as the following decision problem.

Input. String x
Question. Is x ∈ {}?

3



Of course, the answer to the question is “no” regardless of what x is, and
program "{e(x): return 0}" computes {}.
♦

Theorem 9.8. Language {"b", "abb", "baba"} is computable.

Proof. The following program t computes language {"b", "abb", "baba"}.

"{t(x):
if x == "b"

return 1
else if x == "abb"

return 1
else if x == "baba"

return 1
else

return 0
}"

♦

You should be able to use the idea in the proof of Theorem 9.8 to prove the
following.

Theorem 9.9. Every finite set is computable.

Theorem 9.10 shows there is a nonregular language that is computable. That
should come as no surprise. General programs have much more power than
finite-state machines.

Theorem 9.10. Language {anbn | n > 0} is computable.

Proof. Suppose that Σ = {a, b}. To compute {anbn | n > 0}, it suffices to
(1) check that there does not occur an a after a b, and (2) count the a’s,
count the b’s, and check that the two counts are the same. The following
program accomplishes that.

4



"{p(x1x2 . . . xn):
i = 1
ca = 0
cb = 0
while i ≤ n and xi == ’a’
i = i + 1
ca = ca + 1

while i ≤ n and xi == ’b’
i = i + 1
cb = cb + 1

if i == n+ 1 and ca == cb
return 1

else
return 0

}"

♦

Theorem 9.11. Language {n | n is a prime integer} is computable.

Proof. The following program tells whether n is prime.

"{p(n):
if n < 2

return 0
i = 2
while i < n

if n mod i == 0
return 0

i = i+ 1
return 1

}"

♦

5



9.4 Every Regular Language Is Computable

Theorem 9.12. Every regular language is computable.

Proof. Suppose that A is a regular language. That is, there exists a DFA
M so that L(M) = A. Ask someone else to give us such a DFA M =
(Σ, Q, q0, F, δ). Here is a program R(x) that solves A. It simply runs M on
input x.

"{R(x1x2 . . . xn):
q = q0
i = 1
while i ≤ n
q = δ(q, xi)
i = i+ 1

if q ∈ F
return 1

else
return 0

}"

♦

9.5 Computable Questions About DFAs

A program can take a DFA as an input. It is just a matter of encoding the
DFA as a string. Suppose that M = ({a, b}, {1, 2, 3}, 1, {2, 3}, δ) where the
transition function δ is as follows.

δ a b
1 1 2
2 3 1
3 1 1

A possible encoding of M as a string is

"{a,b}{1,2,3}1{2,3}(1,a:1)(1,b:2)(2,a:3),(2,b:1),(3,a:1)(3,b:1)".

Obviously, many different encodings would work.

6



9.5.1 Does M Accept x?

Definition 9.13. The acceptance problem for DFAs is the following decision
problem.

Input. A DFA M (encoded as a string) and a string x.
Question. Does M accept x?

Theorem 9.14. The acceptance problem for DFAs is computable.

Proof. We have seen how to simulate a DFA M on input x. The only
difference here is that M is encoded as a string. But that is not a problem;
any experienced programmer can write a program that reads the encoding
and pulls out all of the features of M .

♦

9.5.2 Does M Accept All Strings?

Let’s look at a more difficult problem.

Definition 9.15. The everything problem for DFAs is the following decision
problem.

Input. A DFA M (encoded as a string) with alphabet Σ.
Question. Does M accept all strings in Σ∗.

Solving the everything problem for DFAs might at first seem impossible.
After all, there are infinitely many strings, and you can’t check them all.
But that is an illusion; it is actually quite easy to check whether M accepts
all strings.

Theorem 9.16. The everything problem for DFAs is computable.

Proof. Suppose M = (Σ, Q, q0, F, δ). Some DFAs have states that cannot
be reached by any input string. M accepts all strings in Σ∗ if every state
that can be reached is an accepting state. The hardest part is determining
the reachable states, and that is actually easy.

Assume that there is a mark bit associated with each state of M that a
program can set to 0 or 1. (That is easy to arrange. If M ’s states are {1,
. . . , n}, all we need is an array of n boolean values to hold the mark bits.)

7



"{everything(M):
// Mark all accessible states

Set the mark bit of every state to 0.
Set the mark bit of q0 to 1.
changed = 1
while changed == 1

changed = 0
for each state q of M

if q’s mark bit is 1
for each symbol a in Σ

r = δ(q, a)
if r’s mark bit is 0

set r’s mark bit to 1
changed = 1

// Check if there a marked rejecting state

for each state q of M
if q’s mark bit is 1 and q 6∈ F

return 0
return 1

}"

♦

9.5.3 Does M Accept No Strings?

Definition 9.17. The emptiness problem for DFAs is language {M | L(M) =
{}}. That is, it is the following decision problem.

Input. DFA M (encoded as a string).
Question. Is it the case that M does not accept any strings?

Theorem 9.18. The emptiness problem for finite state machines is com-
putable.

Proof. The proof is similar to the preceding proof, but the algorithm checks
that each reachable state is a rejecting state.

♦

8



9.5.4 Is L(M) ⊆ L(N)?

Definition 9.19. The subset problem for DFAs is the following decision
problem.

Input. Two DFAs M1 and M2 (encoded as strings).
Question. Is L(M1) ⊆ L(M2)? That is, is every string in L(M1) also
in L(M2)?

Once again, a shallow thought process leads one to conclude that the subset
problem for DFAs is not computable, since there are infinitely many strings
to check. A more careful look shows that it is computable.

Theorem 9.20. The subset problem for DFAs is computable.

Proof. We have seen, in Theorems 5.7 and 5.8, that the class of regular
languages is closed under complementation and intersection. It is important
that both theorems are proved by constructive proofs. That is,

1. There is an algorithm that, given a DFA M , produces DFA M ′ so that
L(M ′) = L(M).

2. There is an algorithm that, given DFAs M1 and M2, produces DFA M ′

so that L(M ′) = L(M1) ∩ L(M2).

For any two sets A and B,

A ⊆ B ↔ A−B = {}.

But A − B = A ∩ B. The algorithm first builds DFA M3 so that L(M3) =
L(M2). Then it builds DFA M4 so that

L(M4) = L(M1) ∩ L(M3) = L(M1) ∩ (L(M2)) = L(M1)− L(M2).

So L(M1) ⊆ L(M2)↔L(M4) = {}. But we have an algorithm (Theorem
9.7) to tell if L(M4) = {}.
♦

9



9.5.5 Are L(M) and L(N) the Same Language?

Definition 9.21. The equivalence problem for DFAs is the following decision
problem.

Input. Two DFAs M1 and M2 (encoded as strings).
Question. Is L(M1) = L(M2)?

Theorem 9.22. The equivalence problem for DFAs is computable.

Proof. For any two sets A and B, by definition,

A = B ↔ A ⊆ B ∧B ⊆ A.

It suffices to test each of L(M1) ⊆ L(M2) and L(M2) ⊆ L(M1) separately.

♦

9.6 Computable Problems About Polynomials

Let’s look at problems involving polynomials with integer coefficients, which
we simply call polynomials. An input to such a problem might be 5x2− 2 or
x2 + 1. A value of x that makes 5x2 − 2 = 0 is called a zero of polynomial
5x2 − 2.

Definition 9.23. The real-zero problem takes a polynomial p of variable x
as input and asks whether there is a zero of p that belongs to R, the set of
real numbers.

For example, polynomial x5−2x3−16 has value 0 when x = 2, so it is a yes-
input to the real-zero problem. Polynomial 4x2 − 4x+ 1 is also a yes-input,
since it has value 0 for x = 1/2.

9.6.1 Quadratic Single-Variable Polymomials

A naive first thought might be that the real-zero problem is not computable
since an algorithm would have to try every possible number. But it should
be clear that the zero problem is computable for quadratic polynomials. The
quadratic formula tells you that equation ax2 + bx+ c = 0 has a real-valued
solution if and only if b2 − 4ac ≥ 0.

10



9.6.2 Arbitrary Degree Single-Variable Polymomials

What if polynomials of x are allowed to have any degree? There are formulas
for polynomials of degrees up to 4, but there is no formula for polynomials
of degree 5 or higher. (The lack of a formula for degree 5 polynomials is one
of the celebrated mathematical results of the nineteenth century.) But we
don’t need a formula, only an algorithm.

There are algorithms for finding zeros of polymonials of arbitrarily high de-
gree. The details are beyond the scope of this class, but you can get a rough
idea of how such an algorithm can work. The coefficient with largest ab-
solute value and the polynomial’s degree allow you to compute upper and
lower bounds on potential zeros. Outside that range, the polynomial is head-
ing toward ∞ or −∞. An algorithm can cut that range up into small pieces
and look for an interval where the polynomial changes sign. The polynomial
must cross the x-axis somewhere in that interval.

Although we have not proved it here, the real-zero problem is solvable for
arbitrary polynomials of a single variable.

9.6.3 Multivariate polynomials

A multivariate polynomial , such as xy − y2 + 9z, can have any number of
different variables; it is an expression made using variables, integer constants
and only operations of addition, subtraction and multiplication.

A single-variable polynomial of degree k can have no more than k different
zeros. But a multivariate polynomial can have infinitely many zeros. Look
at equation x− y = 0. Obviously, any pair of values (x, y) is a zero if x = y.

Although the algorithm is very involved, and well beyond the scope of this
class, it turns out that the real-zero problem is computable for arbitrary
multivariable polynomials.

prev next

11


	Programs and Computability
	Programs
	A Program Is a String

	Computability
	Computable Functions
	Computable Decision Problems
	The Church/Turing Thesis
	The ``Type'' of Adjective Computable

	Examples of Computable Decision Problems
	Every Regular Language Is Computable
	Computable Questions About DFAs
	Does M Accept x?
	Does M Accept All Strings?
	Does M Accept No Strings?
	Is L(M) L(N)?
	Are L(M) and L(N) the Same Language?

	Computable Problems About Polynomials
	Quadratic Single-Variable Polymomials
	Arbitrary Degree Single-Variable Polymomials
	Multivariate polynomials



