
prev next

12 Using Reductions to Show that Problems

are Not Computable

Section 11 provides two tools, Turing reductions and mapping reductions,
that we can use to demonstrate that a problem is uncomputable. They are
generally much easier to apply than diagonalization. Here are the important
facts about reductions from Section 11.

Corollary 11.8. If A ≤t B and A is not computable, then B is not com-
putable.

Corollary 11.15. If A ≤m B and A is not computable then B is not
computable.

12.1 p(x)↑?

Section 11 defines

NOTHLT = {(p, x) | p(x)↑}
HLT = {(p, x) | p(x)↓}

and shows that NOTHLT ≤t HLT. We know from Section 10 that HLT is
uncomputable. Relationship NOTHLT ≤t HLT only tells us that NOTHLT
is no harder than an uncomputable problem, which tells use nothing about
NOTHLT. But it is easy to turn that particular reduction around.

Theorem 12.1. HLT ≤t NOTHLT.

Proof. The following is a Turing reduction from HLT to NOTHLT, estab-
lishing that HLT ≤t NOTHLT.

"{halts(p, x):
If (p, x) ∈ NOTHLT then

return 0
else

1



return 1
}"

By Corollary 11.8, since HLT is uncomputable, NOTHLT is also uncom-
putable.

♦

12.2 The Acceptance Problem

The acceptance problem for programs is as follows.

ACC = {(p, x) | p(x) ∼= 1}.

Theorem 12.2. ACC is uncomputable.

Proof. It suffices to show that HLT ≤t ACC. Here is a Turing reduction
from HLT to ACC. It introduces a new wrinkle: it builds a program on the
fly.

"{halts(p, x):
r = "{r(z): w = p(z); return 1}"
if (r, x) ∈ ACC

return 1
else

return 0
}"

Clearly

(r, x) ∈ ACC ↔ r(x) ∼= 1 by the definition of ACC

↔ p(x)↓ by the definition of r

↔ (p, x) ∈ HLT by the definition of HLT

so program halts(p, x) correctly answers the question: is (p, x) ∈ HLT?

♦

2



There is really no need for the full power of a Turing reduction here. Function

f(p, x) = ("{r(z) : w = p(z); return 1}", x)

is a mapping reduction from HLT to ACC; f is computable and, as we have
just shown,

(p, x) ∈ HLT ↔ f(p, x) ∈ ACC.

You should begin to recognize the brevity of mapping reductions.

12.3 Does p Terminate on Input 1?

We have seen the trick of creating a program on the fly. With the next reduc-
tion, we introduce another trick: make that program ignore its parameter,
so that it does the same thing on all strings. To that end, define

T1 = {r | r(1)↓}.

That is, instead of asking whether a give program halts on some given string
x, T1 asks whether the program halts on input 1. That might sound easier
than the Halting Problem, but it is not.

Theorem 12.3. T1 is uncomputable.

Proof. It suffices to show that there is a mapping reduction from HLT to T1;
that is, we show that HLT ≤m T1. The usual way to show that something
exists is to produce one, and that is what we do. The following function f is
a mapping reduction from HLT to T1.

f(p, x) = "{r(q) : w = p(x); return 1}".

Certainly, f is computable. All it does is write a program (a string) and
return that program. f does not run the program that it builds. Notice that
program r(q) runs program p on input x, but ignores the result. Also notice
that r(q) ignores q; r does the same thing regardless of the parameter that
is passed to it.

Let’s refer to program "{r(q) : w = p(x); return 1}" as rp,x, acknowledging
the fact that p and x are built into r, and you cannot write rp,x until you

3



know what p and x are. Notice that

(p, x) ∈ HLT → p(x)↓ by the definition of HLT

→ rp,x(q)↓ for every q by the definition of rp,x

→ rp,x(1)↓

→ rp,x ∈ T1 by the definition of T1

and

rp,x ∈ T1 → rp,x(1)↓ by the definition of T1

→ p(x)↓ by the definition of rp,x

→ (p, x) ∈ HLT by the definition of HLT

Putting those together:

(p, x) ∈ HLT ↔ rp,x ∈ T1.

Since f(p, x) = rp,x, that is exactly the requirement for f to be a mapping
reduction from HLT to T1.

♦

12.4 Does p Terminate on Input 2?

Define
T2 = {r | r(2)↓}.

It should be obvious how to modify the proof of Theorem 12.3 to show that
HLT ≤m T2. But we already know that T1 is uncomputable, so showing that
T1 ≤m T2 is enough to show that T2 is uncomputable. Let’s do that.

Theorem 12.4. T1 ≤m T2.

Proof. All we need to do is to transform a question of whether a program a
halts on input 1 into an equivalent question of whether another program ba
halts on input 2. That is easy to do: define

ba = "{b(q) : return a(1)}".

4



Clearly,
a(1)↓ ↔ ba(2)↓ .

That is,
a ∈ T1 ↔ ba ∈ T2.

So f(a) = ba is mapping reduction from T1 to T2.

♦

12.5 The Everything Problem for Programs

Define
ALL = {p | ∀x(p(x)↓)}.

That is, ALL is the following decision problem.

Input. Program p.

Question. Does p halt on every input?

Theorem 12.5. ALL is uncomputable.

Proof. It certainly is not enough to argue that an algorithm to solve ALL
would need to try every input. That is nonsense. Suppose stopper is a
program that clearly halts on every input.

"{stopper(x)
return 1

}"

Do you need to try it on every input to be sure that it stops on every input?
Of course not. Consider another program that clearly loops forever on all
inputs, such as the following.

"{looper(x)
while(1)

do nothing
}"

5



You can see from the structure of the program that it loops forever on all
inputs. What we need to show is that there is no program R that takes any
program p as an input and tells you whether p stops on all inputs.

The proof is a mapping reduction from T1 to ALL. Define

rp = "{r(q) : return p(1)}"
f(p) = rp

Since rp ignores its parameter q, it should be clear from the definition of rp
that

p(1)↓ ↔ ∀q(rp(q)↓).
That is,

p ∈ T1 ↔ rp ∈ ALL

which means that f(p) = rp is a mapping reduction from T1 to ALL.

♦

12.6 Complementation and Computability

It is easy to relate the computability of language S and its complement,
language S.

Theorem 12.6. Suppose S is a language over alphabet Σ. If S is a com-
putable then S is also computable.

Proof. Suppose that program p computes S. That is, p stops on every input
and, for every x ∈ Σ∗,

p(x) ∼= 1 ↔ x ∈ S.

The following program computes S by flipping answers from 1 to 0 and from
0 to 1.

"{Sbar(x):
if p(x) == 1

return 0
else

return 1
}"

In fact, it is obvious that Theorem 12.6 extends to an equivalence.

Theorem 12.7. S is computable if and only if S is computable.

6



12.7 Rice’s Theorem

Excluding the proof of Theorem 12.1, you should notice similarities in the
above proofs. Excepting only HLT, all of the problems that we looked at
are questions about programs, and those questions only depend on what the
program does when you run it.

Can we prove a general theorem that takes the similarities of those proofs
into account, so that those theorems all become corollaries of the general
theorem? Such a theorem would say something like, “It is not computable
to determine whether a program has a property that is based solely on what
that program does when you run it.” We can do something like that, but
it is much too vague. The first step we need to make is to find a precise
definition of what it means for a set of programs to depend only on what a
program does when you run it.

12.7.1 Definitions and Some Obvious Theorems

Definition 12.8. Programs p and q are equivalent if p(x) ∼= q(x) for every
x. That is, the result of p(x) is the same as the result of q(x) for every x.
We write p ≈ q to mean that p and q are equivalent programs.

Suppose that L is a set of programs over alphabet Σ. Define L = Σ∗ − L.

Definition 12.9. L is nontrivial if L 6= {} and L 6= Σ∗. That is, neither L
nor L is empty.

The following theorem is obvious.

Theorem 12.10. L is nontrivial if and only if L is nontrivial.

The next definition is critical to what we are trying to do. Read it and make
sure that you understand what it says.

Definition 12.11. Suppose L is a set of programs. Say that L respects
equivalence provided, for every pair of equivalent programs p and q, either p
and q are both in L or p and q are both in L. That is, L must classify any
two equivalent programs the same way; they are either both in L or both not
in L.

7



The following is immediate from Definition 12.11.

Theorem 12.12. L respects equivalence if and only if L respects equiva-
lence.

Definition 12.13. Define

LOOP = "{LOOP(x) : loop forever}"

to be a program that loops forever on all inputs.

12.7.2 Rice’s Theorem

Our goal is to prove a result called Rice’s Theorem, which states that every
nontrivial set of programs that respects equivalence is uncomputable. We
will do that using a lemma and a corollary to the lemma.

Lemma 12.14. If L is a nontrivial set of programs that respects equivalence,
and LOOP 6∈ L, then HLT ≤m L. (That is, L is at least as difficult as
uncomputable set HLT.)

Proof.

1. Suppose that L is a nontrivial set of programs that respects equivalence
and where LOOP 6∈ L.

Known variables: L

Know (1): L is a set of programs.

Know (2): L is nontrivial.

Know (3): L respects equivalence.

Know (4): LOOP 6∈ L.

Goal: HLT ≤m L.

2. Since L is nontrivial, there must be some program that is a member of
L. Ask someone else to provide one. Let’s call it Y .

8



Known variables: L, Y

Know (1): L is a set of programs.

Know (2): L is nontrivial.

Know (3): L respects equivalence.

Know (4): LOOP 6∈ L.

Know (5): Y ∈ L.

Goal: HLT ≤m L.

3. For any given p and x, define rp,x as follows.

"{rp,x(z):
w = p(x)
return Y (z)

}"

Notice that, for arbitrary p and x,

(p, x) ∈ HLT → p(x)↓ from the definition of HLT

→ ∀z(rp,x(z) ∼= Y (z)) from the definition of rp,x

→ rp,x ≈ Y

→ rp,x ∈ L since L respects equivalence

(p, x) 6∈ HLT → p(x)↑ by the definition of HLT

→ ∀z(rp,x(z)↑) by the definition of rp,x

→ rp,x ≈ LOOP

→ rp,x 6∈ L since LOOP 6∈ L and L respects equivalence

9



Known variables: L, Y , rp,x

Know (1): L is a set of programs.

Know (2): L is nontrivial.

Know (3): L respects equivalence.

Know (4): LOOP 6∈ L.

Know (5): Y ∈ L.

Know (6): ∀p∀x((p, x) ∈ HLT→ rp,x ∈ L)

Know (7): ∀p∀x((p, x) 6∈ HLT→ rp,x 6∈ L)

Goal: HLT ≤m L.

4. Our mapping reduction from function HLT to L is:

f(p, x) = rp,x.

Clearly, f is computable, since it only needs to write down program
rp,x. Putting facts (6) and (7) together,

(p, x) ∈ HLT ↔ rp,x ∈ L.

So f is a mapping reduction from HLT to L.

♦

Corollary 12.15. If L is a nontrivial set of programs that respects equiva-
lence, where LOOP 6∈ L, then L is not computable.

Proof. That follows immediately from Lemma 12.14, corollary 11.15 and the
fact that HLT is uncomputable.

♦

Theorem 12.16. (Rice’s Theorem) If L is a nontrivial set of programs
that respects equivalence, then L is not computable.

Proof. There are two cases: either LOOP 6∈ L or LOOP ∈ L.

10



If LOOP 6∈ L, then Theorem 12.16 follows immediately from Corollary 12.15.

So consider the case where LOOP ∈ L. Then LOOP 6∈ L. By Theorems
12.10 and 12.12, L is nontrivial and L respects equivalence. So L meets
the requirements of Corollary 12.15. We conclude that, in this case, L is
uncomputable. By Theorem 12.7, L is also uncomputable.

♦

12.8 Examples Using Rice’s theorem

12.8.1 Example: T1 is Uncomputable

Recall that we defined
T1 = {r | r(1)↓}.

Let’s reprove that T1 is uncomputable using Rice’s Theorem.

Theorem 12.17. T1 is uncomputable.

Proof. Since some programs halt on input 1 and some don’t, T1 is nontrivial.
Suppose that p and q are two equivalent programs. Then

p ∈ T1 ↔ p(1)↓ by the definition of T1

↔ q(1)↓ since p ≈ q

↔ q ∈ T1 by the definition of T1

So T1 respects equivalence. By Rice’s Theorem, T1 is uncomputable.

♦

12.8.2 Example: Is L(p) finite?

Define
FINITE = {p | L(p) is a finite set}.

FINITE is the following decision problem.

Input. A program p.

Question. Is L(p) finite? That is, is {x | p(x) ∼= 1} a finite set?

11



Notice that FINITE is not a finite set! It is a set of programs. For every
computable set S, there are infinitely many programs that solve S. (You can
make infinitely many variations on a program without changing the set that
it decides.) So there are infinitely many programs p where L(p) = {}, and
all of those are members of FINITE.

Theorem 12.18. FINITE is uncomputable.

Proof. FINITE is nontrivial. Some programs answer 1 on only finitely many
inputs, and some answer 1 on infinitely many inputs.

Suppose that p and q are two equivalent programs. Then

p ∈ FINITE ↔ L(p) is a finite set

↔ L(q) is a finite set since p ≈ q

↔ q ∈ FINITE

So FINITE respects equivalence. By Rice’s Theorem, FINITE is uncom-
putable.

♦

12.8.3 Example: Is L(p) = {}?

Define
EMPTY = {p | L(p) = {}}.

EMPTY is not an empty set! It is the following decision problem.

Input. A program p.

Question. Is it the case that L(p) = {}? That is, are there no inputs
x on which p stops and answers 1?

Theorem 12.19. EMPTY is uncomputable.

Proof. EMPTY is clearly nontrivial. It also respects equivalence.

p ∈ EMPTY ↔ L(p) = {}

↔ L(q) = {} since p ≈ q

↔ q ∈ EMPTY

12



By Rice’s Theorem, EMPTY is uncomputable.

♦

12.9 Are p and q equivalent?

Define
EQUIV = {(p, q) | p ≈ q}.

Rice’s Theorem has nothing to say about EQUIV because EQUIV is not a
set of programs. It is a set of ordered pairs of programs. Nevertheless, we
can show that EQUIV is uncomputable.

Theorem 12.20. EQUIV is uncomputable.

Proof. Define
NEVERHALT = {p | ∀x(p(x)↑)}.

NEVERHALT is a nontrivial set of programs that respects equivalence.
Rice’s theorem tells us that NEVERHALT is uncomputable. An equivalent
definition is:

NEVERHALT = {p | p ≈ LOOP}.
Function f defined by

f(p) = (p,LOOP)

is a mapping reduction from NEVERHALT to EQUIV, since

p ∈ NEVERHALT ↔ p ≈ LOOP

↔ (p,LOOP) ∈ EQUIV

12.10 K

Define
K = {p | p(p)↓}.

K is a set of programs, but it does not respect equivalence. Let’s try to show
that K respects equivalence to see where the proof breaks down.

p ∈ K ↔ p(p)↓

↔ q(p)↓ since p ≈ q

13



But what q does on input p is irrelevant to determining whether q ∈ K. All
that matters is what q does on input q.

Nevertheless, we can show:

Theorem 12.21. K is uncomputable.

Proof. Rice’s theorem is not a help here. But it suffices to show that HLT ≤m

K. For arbitrary p and x, define rp,x as follows.

"{rp,x(z):
w = p(x)
return 1

}"

Notice that rp,x ignores its parameter, z. It just runs p(x). It is evident that

(p, x) ∈ HLT → p(x)↓
→ ∀z(rp,x(z)↓)
→ rp,x(rp,x)↓)
→ rp,x ∈ K

and

(p, x) 6∈ HLT → p(x)↑
→ ∀z(rp,x(z)↑)
→ rp,x(rp,x)↑)
→ rp,x 6∈ K

which tells us that
f(p, x) = rp,x

is a mapping reduction from HLT to K.

12.11 Concrete examples

Without concrete examples, it can be easy to believe that our theorems
about problems being uncomputable are only of abstract, mathematical sig-
nificance, and have no bearing on the real world. So let’s look at some
concrete examples to see that the real world is not immune to mathematical
theorems.

14



12.11.1 The 3n+1 problem

The 3n + 1 problem concerns an infinite collection of sequences of integers.
Select a positive integer n to start a sequence. Follow it by n/2 if n is even
and by 3n + 1 if n is odd. Stop the sequence when it reaches 1. The 3n + 1
sequence starting with 9 is (9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10,
5, 16, 8, 4, 2, 1).

It is not obvious that the 3n + 1 sequence stops for all starting values. It
is conceivable that it gets into a cycle. It is also conceivable that, for some
starting values, the numbers in the 3n + 1 sequence keep getting larger and
larger, without bound. In fact, nobody knows whether every 3n+1 sequence
is finitely long. But we can always make a conjecture.

Conjecture 12.22. The 3n+1 sequence is finitely long for every start value.

Look at the following program.

"{test(n):
i = n
while i > 1

if i is even
i = i/2

else
i = 3i + 1

}"

Can you tell whether test is in ALL? (That is, does test halt on all inputs
x?) If test is in ALL, then Conjecture 12.22 is true. If not, then Conjecture
12.22 is false. If you can write a computer program that solves ALL, then
that program tells you whether the above conjecture is true.

But that seems unreasonable; a computer should not be able to resolve a
deep conjecture like that. The fact that ALL is uncomputable keeps you
from solving a deep conjecture by running a computer program that seems
to have nothing to do with the conjecture.

15



12.11.2 Does program p test whether a number is prime?

Now suppose that you are serving as a grader for a computer programming
course. One of the assignments for that course asks students to write a
program that reads an integer n > 1 and tells whether n is prime. As grader,
you are tasked with determining whether each submission is correct, with
the sole criterion for correctness being that the program correctly determines
whether n is prime for every integer n. (In the programming language being
used, integers can be arbitrarily large, so you can’t try the program on a
finite range of integers to decide whether it works.)

To make sure that you are ready, you write your own program p to tell if
a number is prime. Now, given a student submission q, the problem is to
determine whether q ≈ p. But that is uncomputable! Could that possibly be
a problem? Suppose that a particularly devious student submits the following
program.

"{q(n)
i = n
while i > 1

if i is even
i = i/2

else
i = 3i + 1

i = 2
while i < n

if n mod i == 0
return 0

i = i + 1
return 1

}"

You notice that, if Conjecture 12.22 is true, the submitted program q is
correct. But if Conjecture 12.22 is false, then there are values n on which q
loops forever, meaning that q is incorrect. In order to grade q according to
the grading criterion, you must determine whether Conjecture 12.22 is true!

16



12.11.3 Goldbach’s conjecture

The following conjecture is due to Goldbach.

Goldbach’s Conjecture 12.23 Every even integer that is greater than 2 is
the sum of two prime integers.

For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, etc. Nobody knows
whether Goldbach’s conjecture is true, and it appears to be a very difficult
nut to crack. But we can write the following program, which contains an
infinite loop that checks, for each even number n, whether there are two
prime numbers whose sum is n. If it finds an even number n that is not the
sum of two prime numbers, it stops. Otherwise, it loops forever.

"{goldbach()
n = 4
while(1)

i = 2
found = 0
while found == 0 and i < n

if i is prime and n− i is prime
found = 1

i = i + 1
if found == 0

return 0
n = n + 2

}"

To answer Goldbach’s conjecture, all you need to do is ask whether program
goldbach ever stops. You can ask whether it is in ALL or in T1 or in a variety
of languages because goldbach ignores its input.

Goldbach’s conjecture is another deep conjecture that could be resolved by
running a computer program if ALL or T1 is computable. The fact that no
such computer program exists should come as no surprise.

12.11.4 Compilers

Compilers for programming languages offer warnings when you do something
suspicious (some more than others). One warning that would be nice would

17



be whether the program can ever loop forever. Yet, no compilers offer such
warnings. Can you say why not?

prev next

18


	Using Reductions to Show that Problems are Not Computable
	p(x) –"3222378 ?
	The Acceptance Problem
	Does p Terminate on Input 1?
	Does p Terminate on Input 2?
	The Everything Problem for Programs
	Complementation and Computability
	Rice's Theorem
	Definitions and Some Obvious Theorems
	Rice's Theorem

	Examples Using Rice's theorem
	Example: T1 is Uncomputable
	Example: Is L(p) finite?
	Example: Is L(p) = {}?

	Are p and q equivalent?
	K
	Concrete examples
	The 3n+1 problem
	Does program p test whether a number is prime?
	Goldbach's conjecture
	Compilers



