
prev next

8 Equivalence of Regular Expressions and Finite-

State Machines

BIG IDEA: Sometimes, two very different definitions define the same
thing.

We have defined the class of regular language using DFAs. We have also
defined regular expressions. Finite-state machines and regular expressions
could not be more different from one another. Amazingly, the class of lan-
guages that can be described by regular expressions is exactly the class of
regular languages (the ones solvable by DFAs)! We will demonstrate the
following two lemmas. (A lemma is a theorem that is proved as a step in
proving a more important theorem.)

Lemma 8.1. If e is a regular expression then L(e) is a regular language.

Lemma 8.2. If A is a regular language then there exists a regular expression
e so that L(e) = A.

The following theorem follows immediately from the two lemmas.

Theorem 8.3. Language A is regular (solvable by a DFA) if and only if
there exists a regular expression that describes language A.

Proofs of Lemmas 8.1 and 8.2 are long, and they involve defining new types
of finite-state machines that are of an intermediate nature between regular
expressions and DFAs.

8.1 Nondeterministic Finite-State Machines

Like a DFA, a nondeterministic finite automaton, or NFA, is a 5-tuple (Σ,
Q, q0, F , δN). An NFA differs from a DFA in the following two ways.

1. For each state q and each symbol c ∈ Σ, instead of giving a single
state, the transition function δN(q, c) of gives a set of states that can

1



be reached from q upon reading symbol c. For example, there can
be several transitions from state 2 to other states, or there can be no
transitions from state 2 to other states.

2. An NFA accepts string s just when there exists a path from the start
state q0 to an accepting state (a member of F ), where the symbols
along the path are labeled, in sequence, by the symbols in string s.

Figure 8.1 shows the transition diagram of an NFA that accepts all strings
over alphabet {a, b} that end on ab.

8.1.1 The Subset Construction

Theorem 8.4. For every NFA M there is an equivalent DFA M ′. The two
are equivalent in the sense that they accept the same language.

Proof Sketch. The proof is an algorithm, called the subset construction,
that converts an NFA into an equivalent DFA. The idea is simple: make the
DFA keep track of all states that the NFA could possibly be in. So each
state of the DFA is a set of states of the NFA. Here are the main ideas of the
subset construction.

1. If q0 is the start state of the NFA, then the start state of the DFA is
{q0}. That is, the DFA starts out in a state where it can only be in
state q0.

2. A state of the DFA is an accepting state provided it contains at least
one accepting state of the NFA.

3. Suppose that δN is the transition function of the NFA. The DFA has a
transition from set s to set t labeled by symbol c provided

t =
⋃
q∈s

δN(q, c).

Typically, not all of the sets of states are accessible from the start state.
Figure 8.2 shows the DFA that is obtained from the NFA in Figure 8.1 by
the subset construction. Inaccessible states are omitted.

♦

2



Figure 8.1. Transition diagram of an NFA that recognizes the set of all
strings over alphabet {a, b} that end on ab. For example, it accepts "ab",
"bbaab" and "aaaaaab".
Notice that there are two transitions out of state 1 labeled by symbol a.
There are no transitions leaving state 3.
To run an NFA, start in state q0 and follow transitions, writing the symbol
of each transition as you follow it. If it is possible to write down string s
and stop at an accepting state, then s is in the language of the NFA.

Figure 8.2. The DFA that is obtained from the NFA in Figure 8.1 using
the subset construction. Each state of the DFA is a set of states of the
NFA.

To build the DFA, start by creating start state {q0}. Then create new
states as they are needed.

For example, this DFA has a transition from state {1,2} to state {1,3}
labeled b because there is a transition in the DFA from 1 to 1 labeled b
and there is also a transition from 2 to 3 labeled b.

3



NFAs with ε-Transitions

An NFA with epsilon-transitions (an NFAε) is like an NFA, but it allows
transitions labeled ε, called ε-transitions. You follow an ε-transition without
reading a symbol.

It is easy to show that ε-transitions are not essential; you can get rid of them.
That is, the following theorem is true. Its proof is left as an exercise. (Just
add new non-epsilon-transitions that allow an NFA to reach all the same
states as a particular NFAε.)

Theorem 8.5. For every NFAε M , there is an equivalent NFA M ′ (without
ε-transitions).

♦

There is an important property of NFAs with ε-transitions. You can convert
any NFAε to an equivalent one with only one accepting state. That is easy!
Just add a new state (to be the sole accepting state), add an epsilon transition
from each accepting state to the new accepting state, and finally make all of
the states except the new accepting state rejecting states.

Converting a Regular Expression to an NFA with ε-
Transitions

Now we are ready to show how to convert a regular expression to a DFA.
The idea is to convert the regular expression to an NFAε, then to convert
that to an ordinary NFA, then to convert the NFA to a DFA using the subset
construction.

Theorem 8.6. For every regular expression, there is an equivalent NFAε.

Proof. The proof is by induction on the length of a regular expression. Refer
to the definition of a regular language in Section 7. A regular expression has
one of five different forms: ∅, c (where c is a symbol), A ∪B, AB and A∗.

It is obvious that there is an NFA for an empty set and for every singleton
set that contains a string of length 1. Also, we already know that the set of
regular language is closed under union; having shown that the languages of
regular expressions A and B are regular, we can conclude that the language
of A ∪B is also regular by that closure result.

4



Figure 8.3. The regular languages are closed under concatenation. Sup-
pose A and B are regular languages. Get an NFAε for each of A and
B, and ensure that the NFAε has exactly one accepting state. Build an
NFAε as shown in the above diagram, connecting the NFAε for A with
that for B. (The ε-transition is labeled e.) Make the accepting state of A
nonaccepting, and make only the start state of A be the start state of the
combined machines.

Figure 8.4. The regular languages are closed under Kleene closure. Sup-
pose that A is a regular language. Get an NFAε for A, and assume that
it has exactly one accepting state. Build an NFAε for A∗ as shown in the
diagram above.

5



All we need to do is to show that the regular languages are closed under
concatenation and Kleene closure.

1. Suppose that A and B are regular languages. Then the concatenation
AB is also regular. See Figure 8.3.

2. Suppose that A is regular language. Then the Kleene closure A∗ of A
is also regular. See Figure 8.4.

♦

Now we are ready to prove Lemma 8.1.

Lemma 8.1. If e is a regular expression then L(e) is a regular language.

Proof. Convert regular expression e to an NFAε, then to an NFA using
Theorem 8.5, an finally to a DFA using the subset construction.

♦

8.2 Converting a DFA to a Regular Expression

Now that we have shown how to convert a regular expression to an equivalent
DFA (in a few steps), we need to show how to convert a DFA into an equiv-
alent regular expression. For that, we need yet another type of finite-state
machine.

A generalized finite-state machine (a GFA) has each transition labeled by a
regular expression. The idea is that you can follow a transition while reading
any member of the regular expression that labels the transition.

Theorem 8.7. For every DFA M there is an equivalent regular expression
e.

Proof. Start with a DFA. It is a special case of an NFAε that happens not
to have any ε-transitions. Add a new accepting state and ε-transitions from
all former accepting states so that there is exactly one accepting state. An
NFAε is a special case of a GFA, and we start with that GFA. (Replace ε by
regular expression ∅∗.)

6



Figure 8.5. Choose a state q to remove that is not the start state and
not the accepting state. First modify the transitions between states u
and v for all pairs of states (u, v) where u 6= q and v 6= q. The left-hand
diagram shows transitions from u to q, q to itself and q to v. The right-
hand diagram shows the new transition from u to v. Notice that the new
regular expression labeling the transition from u to v makes it unnecessary
to go through q.

Transitions must be modified for every pair of states (u, v) where u 6= q
and v 6= q, including the case where u = v.

If there is no transition between any of the shown states, add a transition
labeled ∅ between them. Such a transition can never be taken. If you
prefer, you can think of special modifications to make when some of the
transitions are missing.

7



Now the idea is to remove states from the GFA one at a time, but not to
remove the start or accepting state. Figure 8.5 shows how to remove state
q. It is not the most efficient way to do that, but it gets the job done.

Eventually, you reach a GFA that has only two states, a start state and an
accepting state, as shown in Figure 8.6. It is easy to convert that GFA into
a regular expression.

♦
Lemma 8.2. If A is a regular language then there exists a regular expression
e so that L(e) = A.

Proof. That is immediate from Theorem 8.7.

♦

prev next

Figure 8.6. The final step in converting a GFA into a regular expression.
The diagram shows the case where there are only two states left. Convert
the GFA shown in the diagram into regular expression A∗B(D∪CA∗B)∗.
That captures all ways of getting from the start state to the accepting
state.

8


	Equivalence of Regular Expressions and Finite-State Machines
	Nondeterministic Finite-State Machines
	The Subset Construction

	Converting a DFA to a Regular Expression


