
prev next

5 Finite-State Machines and Regular Languages

This section looks at a simple model of computation for solving decision
problems: a finite-state machine. A finite-state machine is also called a
finite-state automaton (ah-TOM-a-tawn, plural automata), and the finite-
state machines that we look at here are called deterministic finite automata,
or DFAs.

Finite-state machines of a variety of flavors occur in other settings. For
example, the processor that is at the heart of a computer is modeled as a
finite-state machine. Compilers for programming languages use finite-state
machines in their design.

BIG IDEA: We can define a model of computation, finite-state machines,
in a precise and economical way.

5.1 Intuitive Idea of a DFA

Figure 5.1 shows a diagram, called a transition diagram, of DFA M1. Each
circle or double-circle is called a state. One of the states, marked by an arrow,
is called the start state. A state with a double circle is called an accepting
state and a state with a single circle is called a rejecting state.

The arrows between states are called transitions , and each transition is la-
beled by a member of the DFA’s alphabet Σ (set {a, b} for M1).

Figure 5.1. Transition diagram of DFA M1 that recognizes language
{s ∈ {a, b}∗ | s has an even number of a’s}. There are two states. State 1
is the start state. State 1 is an accepting state and state 2 is a rejecting
state.

1

Figure 5.2. Transition diagram of DFA M2, which accepts strings whose
length is divisible by 3.

Figure 5.3. Transition diagram of DFA M3, which rejects all strings.

Important. For each state q and each member c of Σ, there must be exactly
one transition going out of q labeled c.

A DFA is used to recognize a language (a decision problem). To “run” a
DFA on string s, start in the start state. Read each character, and follow
the transition labeled by that character to the next state. On input "aabab",
M1 starts in state 1, then hits states 1, 1, 2, 2, 1, ending in state 1.

The end state determines whether the DFA accepts or rejects the string.
Since state 1 is an accepting state, M1 accepts "aabab". It should be easy
to see that M1 accepts strings with an even number of b’s and rejects strings
with an odd number of b’s.

A DFA M with alphabet Σ recognizes the set

L(M) = {s | s ∈ Σ∗ and M accepts s}.

For example, L(M1) = {s | s ∈ {a, b}∗ and s has an even number of b’s}.
Figures 5.2 and 5.3 show two finite-state machines M2 and M3 with alphabet
{a, b} where

L(M2) = {s | |s| is divisible by 3}
L(M3) = {}

2

5.2 Designing DFAs

BIG IDEA: A finite-state machine is best understood in terms of the set
of strings that reach each state.

There is a simple and versatile way to design a DFA to recognize a selected
language L. Associate with each state q the set of strings Set(q) that end on
state q. For example, in machine M2,

Set(0) = {s | |s| ≡ 0 (mod 3)}
Set(1) = {s | |s| ≡ 1 (mod 3)}
Set(2) = {s | |s| ≡ 2 (mod 3)}

Your goals in designing a DFA that recognizes language L are:

(a) Start by deciding what the states will be and what Set(q) will be for
each state. Make sure that, for each state q, either Set(q) ⊆ L (so
that q is an accepting state) or Set(q) ⊆ L, (so that q is a rejecting
state).

(b) Draw transitions so that, if x ∈ Set(q) and there is a transition from
state q to state q′ labeled a, then x · a ∈ Set(q′).

5.2.1 Example: Even Binary Numbers

Figure 5.4 shows a DFA with alphabet {0,1} that accepts all even binary
numbers. For example, it accepts "10010" and rejects "1101". Set(0) =
{s ∈ {0, 1}∗ | s is an even binary number} and Set(1) = {s ∈ {0, 1}∗ | s is
an odd binary number}. The transitions are obvious: adding a 0 to the end
of any binary number makes the number even, and adding a 1 to the end
makes the number odd.

5.2.2 A DFA Recognizing Binary Numbers that are Divisible by
3

Figure 5.5 shows a DFA that recognizes binary numbers that are divisible
by 3. For example, it accepts "1001" and "1100", since "1001" is the binary

3

Figure 5.4. A DFA that recognizes even binary numbers. An empty
string is treated as 0.

representation of 9 and "1100" is the binary represention of 12. But it rejects
"100", the binary representation of 4.

Thinking of binary strings as representing numbers,

Set(0) = {n | n ≡ 0 (mod 3)}
Set(1) = {n | n ≡ 1 (mod 3)}
Set(2) = {n | n ≡ 2 (mod 3)}

Suppose that m is a binary number that is divisible by 3. Adding a 0 to the
end doubles the number, so m · 0 is also divisible by 3. (Adding 0 to then
end of "1001" (910) yields "10010" (1810).) Adding a 1 to m doubles m and
adds 1. But modular arithmetic tells us that

m ≡ 0 (mod 3) → 2m ≡ 0 (mod 3)

→ 2m+ 1 ≡ 1 (mod 3)

so there is a transition from state 0 to state 1 on symbol 1. You can work
out the other transitions.

Figure 5.5. A DFA recognizing binary numbers that are divisible by 3.
An empty string is treated as 0.

4

Figure 5.6. A DFA recognizing strings of a’s and b’s with at least two
a’s and at most one b.

5.2.3 Strings Containing at Least Two a’s and at Most One b.

Figure 5.6 shows a DFA that regognizes language

{w ∈ {a, b}∗ | w contains at least two a’s and at most one b}.

The idea is to keep track of the number of a’s (up to a maximum of 2) and
the number of bs (up to a maximum of 2). That suggests that we need nine
states: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) and (2, 2), where
the first number is the count of a’s and the second the count of b’s, and 2
means at least 2. The accepting states and transitions should be obvious.

5.3 Definition of a DFA and the Class of Regular Lan-
guages

The introduction above only shows transition diagrams, and does not ade-
quately say exactly what a DFA is and how to determine the language that it
recognizes. This section corrects that with a careful definition of both. The
first definition says what a DFA is without saying what it means to run that
machine on a string. It is, in a sense, just the syntax of a DFA.

5

5.3.1 Definition of a DFA

Definition 5.1. A deterministic finite-state machine is a 5-tuple (Σ, Q, q0,
F , δ). That is, the DFA is described by those five parts.

• Σ is the machine’s alphabet.

• Q is a finite nonempty set whose members are called states .

• q0 ∈ Q is called the start state.

• F ⊆ Q is the set of accepting states . (All members of Q−F are rejecting
states .)

• δ : Q× Σ→ Q is called the transition function.

From state q, if you read symbol a, you go to state δ(q, a). Notice that,
because δ is a function, there must be exactly one state to go to from state
q upon reading symbol a.

5.3.2 When Does DFA M Accept String s?

Consider a DFA M = (Σ, Q, q0, F , δ).

Definition 5.2. If q ∈ Q and x ∈ Σ∗, then q : x is defined inductively as
follows.

1. q : ε= q.

2. If x = cy where c ∈ Σ and y ∈ Σ∗ then q : x = δ(q, c) : y.

The idea is that q : x is the state that M reaches if it starts in state q and
reads string x.

Every DFA M has a language L(M) that it recognizes, and the following
definition says what that is.

Definition 5.3. L(M) = {x ∈ Σ∗ | q0 : x ∈ F}.
That is, M accepts string x if M reaches an accepting state when it is run
on x starting in the start state, q0.

6

5.3.3 The Class of Regular Languages

Definition 5.4. Language A is regular if there exists a DFA M such that
L(M) = A.

We have see a few regular languages above, including {} and the set of binary
numbers that are divisible by 3.

5.4 A Theorem about q : x

Notation q : x satisfies a certain kind of associativity.

Theorem 5.5. (q : x) : y = q : (xy).

Proof. The proof is by induction of the length of x. Read Cummings, Chap-
ter 4 for a review of mathematical induction. It suffices to

(a) show that (q : x) : y = q : (xy) for all q and y when |x| = 0, and

(b) show that (q : x) : y = q : (xy) for an arbitrary nonempty string x, un-
der the assumption (called the induction hypothesis) that (r : z) : y =
r : (zy) for any state r, string y and string z that is shorter than x.

Case 1 (|x| = 0). That is, x = ε. By definition, q : ε = q. So

(q : x) : y = q : y

= q : (xy)

because, when x = ε, xy = y.

Case 2 (|x| > 0). A nonempty string x can be broken into x = cz where c
is the first symbol of x and z is the rest.

(q : x) : y = (q : (cz)) : y

= (δ(q, c) : z) : y by the definition of q : (cz)

= δ(q, c) : (zy) by the induction hypothesis

= q : (czy) by the definition of q : (czy)

= q : (xy) since x = cz

7

5.5 Closure Results

A closure result tells you that a certain operation does not take you out of a
certain set. For example, Z is closed under addition because the sum of two
integers is an integer. Z is also closed under multiplication. But Z is not
closed under division, since 1/2 is not an integer.

The class of regular languages possesses some useful closure results.

Definition 5.6. Suppose that A ⊆ Σ∗ is a language. The complement A of
A is Σ∗ − A.

Theorem 5.7. The class of regular languages is closed under complemen-
tation. That is, if A is a regular language then A is also a regular lan-
guage. Put another way, for every DFA M , there is another DFA M ′ where
L(M ′) = L(M). Moreover, there is an algorithm that, given M , finds M ′.
That is, the proof is constructive.

Proof. Suppose that M = (Σ, Q, q0, F, δ). Then M ′ = (Σ, Q, q0, Q − F, δ).
That is, simply convert each accepting state to a rejecting state and each
rejecting state to an accepting state.

♦

Theorem 5.8. The class of regular languages is closed under intersection.
That is, if A and B are regular languages then A∩B is also a regular language.
Put another way, suppose M1 and M2 are DFAs with the same alphabet Σ.
There is a DFA M ′ so that L(M ′) = L(M1) ∩ L(M2). That is, M ′ accepts
x if and only if both M1 and M2 accept x. Moreover, there is an algorithm
that takes parameters M1 and M2 and produces M ′.

Proof. The idea is to make M ′ simulate M1 and M2 at the same time. For
that, we want a state of M ′ to be an ordered pair holding a state of M1 and
a state M2. Recall that the cross product A × B of two sets A and B is
{(a, b) | a ∈ A ∧ b ∈ B}.
Suppose that M1 = (Σ, Q1, q0,1, F1, δ1). and M2 = (Σ, Q2, q0,2, F2, δ2). Then
M ′ = (Σ, Q′, q′0, F

′, δ′) where

Q′ = Q1 ×Q2

q′0 = (q0,1, q0,2)

8

F ′ = F1 × F2

δ′((r, s), a) = (δ1(r, a), δ2(s, a))

State (r, s) of M ′ indicates that M1 is in state r and M2 is in state s. Transi-
tion function δ′ runs M1 and M2 each one step separately. Notice that the set
F ′ of accepting states of M ′ contains all states (r, s) where r is an accepting
state of M1 and s is an accepting state of M2. So M ′ accepts x if and only
if both M1 and M2 accept x.

♦

Theorem 5.9. The class of regular languages is closed under union. That
is, if A and B are regular languages then A ∪B is also a regular language.

Proof. By DeMorgan’s laws for sets,

A ∪B = A ∩B.

But we already know that the class of regular languages is closed under
complementation and intersection.

♦

prev next

9

	Finite-State Machines and Regular Languages
	Intuitive Idea of a DFA
	Designing DFAs
	Example: Even Binary Numbers
	A DFA Recognizing Binary Numbers that are Divisible by 3
	Strings Containing at Least Two a's and at Most One b.

	Definition of a DFA and the Class of Regular Languages
	Definition of a DFA
	When Does DFA M Accept String s?
	The Class of Regular Languages

	A Theorem about q : x
	Closure Results

