Intelligent Narrative-Centered Learning Environments

James C. Lester
Center for Educational Informatics
North Carolina State University

North Carolina State University Center for Educational Informatics

Transforming education with AI-driven learning environments

AI-Enriched Learning

Personalized Learning Assistants for Lifelong Learning

One-on-One Tutoring

Design Challenge

"Provide a teacher for every learner"

- Learn at their own pace
- Receive continuous, customized and meaningful feedback and assessment
- Acquire new skills in a way that is compelling and engaging

Design Challenge

"... provide learning environments that approach the effectiveness of one teacher for every learner. Such systems, properly used, can produce a significantly better-educated populace by combining advances in learning sciences with advances in information technology."

Narrative-Centered One-on-One Learning

Personalized Learning Hypotheses

Intelligent Story + Pedagogical Agents

Story-centric Games

- Game-based learning environments in which learners:
 - Participate in "story-centric" problem-solving activities
 - Immerse themselves in tailored narratives
- Revolve around:
 - Believable characters
 - Expansive virtual worlds
 - Rich stories

Affect-Rich Learning Environments

- Interplay of affect and cognition
 - Performance impacts affective states
 - Affective states impact performance
- Supporting affect
 - · Natural component of tutoring
 - Keystone of effective learning
- Long term effects
 - Motivation
 - Self-efficacy

Intelligent Tutoring in Game-Based Learning Environments

- Affect-rich characters
- Problem-solving guidance
- Context-sensitive feedback
- Dynamic problem selection
- Tailored explanations

Crystal Island Narrative-Centered Learning Environment

- Curricular Focus
 - Eighth grade microbiology
 - NC Standard Course of Study
- Story
 - Investigate outbreak on remote island
 - Recover notes from earlier investigation
 - Identify illness and recommend treatment
- Evolution
 - ~10 years iterative refinement
 - Many laboratory and classroom studies

Crystal Island: Lost Investigation

- Design a suite of intelligent gamebased learning environment technologies for middle grade science + literacy education.
- Create an implementation program
 to provide an account of middle
 grade students' acquisition of science
 and literacy skills as they interact
 with intelligent game-based learning
 environments.

Tailoring Events in Narrative-Centered Learning Environments

- Game elements have dual roles
 - Pedagogical
 - Narrative
- Multiple forms of narrativecentered tutorial events
 - Side quests for knowledge remediation
 - Narrative events for embedded assessment
- Dynamically tailored sequences of embedded assessments

Explore Virtual Environment

Posters

Laboratory Equipment

Diagnosis Worksheet

Informational Texts

Informational Texts

Concept Matrices

Multimodal Character Dialogues

Adapting to Affect in in Narrative-Centered Learning

Kristy Boyer (Co-PI) Computer Science U. of Florida

Brad Mott (Co-PI) Computer Science NCSU

Eric Wiebe (Co-PI) STEM Education NCSU

Empathetic Scaffolding in Narrative-Centered Learning

Wizard-of-Oz Narrative-Centered Learning Studies

Human Wizard

Multimodal Sensors

- Facial video camera
- Galvanic skin conductance-recording bracelets
- Depth camera
- Gaze tracker
- Microphone

Dialogue Moves

- Wizard selects one of six dialogue act categories.
- Wizard chooses from a predefined set of utterances for the chosen dialogue act category.

Dialogue Act Modeling in Narrative-Centered Learning

Embedded Assessment in Narrative-Centered Learning

Narrative-Centered Learning Analytics

- Real-time trace data
- Window into student motivation
- Triangulation:learning processes+ outcomes
- Designing for scale

ENGAGE: Game-based Learning for Middle School Computational Thinking

Kristy Boyer (Co-PI) Computer Science U. of Florida

Brad Mott (Co-PI) Computer Science NCSU

Eric Wiebe (Co-PI) STEM Education NCSU

ENGAGE: Game-based Learning for Middle School Computational Thinking

Curriculum

- Middle school computer science education
- AP Computer Science Principles

Platform

- Unity game engine
- FLARE user interface toolkit [Mott et al., 2014]

Design Challenge Reformulated

Affect-Informed AI

Game-Driven
Interactive Narrative

Highly
Motivated,
Highly
Effective
Learners

Intelligent Narrative-Centered Training

- Rich personalized storycentered training driven by Al
- Example: Collaboration with ARL and Columbia University
- Leverage machine learning to induce models
 - Integrate trace data, sensor data, and field observations of trainee emotions
 - Predict emotions accurately and efficiently

Source: www.ecsorl.com

Affect Detection in Combat Medic Training

Ryan Baker
(PI)
Learning Anlytics
Penn

Brad Mott (Co-PI) Computer Science NCSU

Affect-Informed Learning in Narrative-Centered Training

Narrative-Centered VR Training for First Responders

DeepGen: Reinforcement Learningbased Trainining Scenario Generation

- Automated scenario generation is invisible to learners
- Training scenarios are dynamically tailored to learner traits, knowledge, and performance
- Scenario generation improves as more data is provided to DeepGen

Goal Recognition in Narrative-Centered Learning

Narrative-Centered Learning in Informal Learning Contexts

James Minogue (Co-PI) Elementary Education NCSU

Brad Mott (Co-PI) Computer Science NCSU

Multimodal Narrative-Centered Learning Analytics

- Science centers and museums
- Investigating visitor engagement
 - Cognitive
 - Affective
 - Behavioral
- Multimodal sensor streams

Multimodal Narrative-Centered Learning Analytics

Narrative-Centered Learning for Health Behavior Change

Elizabeth Ozer
(PI)
Pediatrics
University California – San Francisco

Intelligent Narrative-Centered Classrooms of the Future

I-ACT: Intelligent Augmented Cognition for Teachers

Intelligent Narrative-Centered Classrooms of the Future

I-ACT: Intelligent Augmented Cognition for Teachers

Future of Narrative-Centered Learning

Intention Recognition

Tutorial Dialogue

Self-Regulated Learning

Affect Modeling

Scaling Narrative-Centered Learning

- Goal: Design robust story-rich pedagogical support for learner-adaptive interactions
- Potential Impact: Narrative-tutorial planning generalized from training populations to unseen students for high engagement

Conclusions

- Personalized learning poses significant computational challenges.
- Designing narrative-centered environments holds considerable promise for fine-grained, real-time inclassroom and out-of-classroom learning.
- Integrating rich cognitive student modeling and affective student modeling offers considerable potential for personalized learning.
- Narrative-centered learning with adaptive scaffolding offers promise for supporting engaging learning experiences on a broad scale.

Acknowledgements

Conseil de recherches en sciences humaines du Canada

www.cei.ncsu.edu

lester@ncsu.edu