
Successful approaches for
teaching Computer Science

Seminar @ East Carolina University, Nov 22, 2019

Ajay Bansal

School of Computing, Informatics, and Decision
Systems Engineering (CIDSE)

Arizona State University

Research Interests

SOFTWARE ENGINEERING

- Software Analysis & Design
- Software Verification & Validation (Co-logic
Programming)
- Software Development (Programming
Paradigms)

KNOWLEDGE REPRESENTATION & AI
- Model Checking, Planning algorithms with time
constraints
- Data Mining, Natural Language processing,
Machine Learning

AUTOMATED REASONING

- Non-monotonic Reasoning (Goal-directed
Answer set Programming)
- Rule-based reasoning engines for Game
development

SEMANTIC COMPUTING

- Semantic description language for Web Services
(USDL)
- Web service discovery & composition (using
Constraint Logic Programming)

PROGRAMMING LANGUAGES

(DECLARATIVE PROGRAMMING)

• 12+ years of CS teaching experience
• Taught 20+ unique CS courses in 80+ course offerings
• Taught courses in the areas of:

Algorithms, Data Structures, Programming Paradigms, Discrete
Math, Software Engineering, Database Management, Artificial
Intelligence, Theory of Computation, Programming Languages,
Internet Computing, Web UI development, Introduction to

Programming, Object-oriented programming, Compiler design…

• Teaching Awards:
o 2019 - Fulton Teaching Excellence Award (given to one faculty member across all

engineering programs at ASU (20,000+ students and 500+ faculty)))
o 2018 - Best Teacher Award –Top 5% (Fulton Schools of Engineering, ASU)
o 2015 - Best Teacher Award –Top 5% (Fulton Schools of Engineering, ASU)
o 2013 - Best Teacher Award (Department of Engineering, CTI @ASU)

Been There… Done That…

Course Evaluation:

• …
• …
• The course was too slow…
• …
• It was too fast…
• …
• …
• The pace was just right…
• …

It was the ‘Introduction to Programming’ course

Once upon a time …

• Students come from very diverse backgrounds in CS courses
o Undergrad – AP credits from high school, know multiple

languages vs never programmed before…
o Graduate – from various undergrad disciplines, non-majors…

• A wide spectrum of the levels of preparatory training that
students come in with

• Cannot assume that the students have the pre-requisite
knowledge to be successful in the course

• Big class sizes as more students get attracted to CS programs

Challenges in CS Teaching

• Problem Solving
• A fundamental skill that spans across all subfields of CS
• Very important, particularly in the software industry, as a

software is an encoding of our solution to a problem
• No widely accepted formal way to teach Problem Solving

• Algorithmic Thinking
• An important skill for Computational Problem Solving
• Usually confined to Algorithms design course

Challenges in CS Teaching

• Teach assuming basic preparatory training or pre-
requisite knowledge

• Motivate and Engage students at all levels

• Incorporate Problem Solving with every topic taught
in the course

• Inspire Algorithmic Thinking to solve these problems

• Use scalable approaches

Requirements for my courses

Outcomes Based Education

Discovery Learning based Lectures:
o Concepts to be taught are presented as problems or

situations
o (Existing) Solutions to these problems are (re)invented in

class
o Topics are covered as they may have been invented in the

first place

Examples: Loops in languages, Sum of Cubes, Divide & Conquer …

“Art of teaching is the art of assisting discovery”
– Mark Van Doren

Let’s re-invent the wheel…

Algorithmic Thinking:

Program = Algorithm + Data Structures
- Niklaus Wirth

Example: Minimum spanning tree

Let’s break it up…

Minimum Spanning Tree

Problem: given a connected, undirected, weighted
graph, find a spanning tree using edges that minimize
the total weight

14
10

3

6 4
5

2

9

15

8

MST()
{

T = Æ;
for each v Î V

MakeSet(v);
sort E by increasing edge weight w
for each (u,v) Î E (in sorted order)

if FindSet(u) ¹ FindSet(v)
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));

}

Algorithm…

Algorithmic Thinking:

Algorithm = Logic + Control
- Robert Kowalski

Examples: Recursion, Change making problem…

Let’s break it up…

Use inspired:
• Real world examples
• Example: Sanskrit Poetry

Reasoning inspired:
• Comparative Examples
• Example: Quick Sort Vs Bubble/Selection Sort
• Example: Brute Force Vs Dynamic Programming

Tell Them Why…

Some ‘awe’ in every lecture:
examples, programs, story, anecdotes, …

Examples: Representation in Algorithms, Factorial,
Cryptarithmetic puzzles, …

“Teaching should be such that what is offered is
perceived as a valuable gift” - Einstein

Awe-some Lectures

SEND + MORE = MONEY

• Each letter represents a unique digit from 0 to 9.

• Two letters cannot represent the same digit.

• What digit each letter represents to satisfy the simple

equation below?
Solution:

SEND + MORE = MONEY

solve(Digits) :-
Digits = [S,E,N,D,M,O,R,Y],
Digits :: [0..9],
alldifferent(Digits),

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E

#= 10000*M + 1000*O + 100*N + 10*E + Y,
labeling(Digits).

Declarative Programming:

? – solve(X)
X = [9,5,6,7,1,0,8,2]

ajay.bansal@asu.edu

Thank You!!

