Detecting the 1%:
%, browing the Science

of Dulnerability
Discovery

Laurie Willams
laurie_wiliams@ncsu.edu

o
NC STATE $>> Re;search Group

NIVERSITY |28
. S PR R

Real people — Real Projects — Real Impact

Meet the “fishy” vulnerability characters

Edwin the Exploitable

David the Detected Larry the Latent 4

The goal is to aid software
in efficiently detecting explo

vulnerabilities through empiri

oractitioners

itable

cal study of

the characteristics of vulherabilities and
through the development of vulnerab|l|ty

prediction models.

Rist

The goal is to aid sottware
in efficiently detecting explo

oractitioners

itable

vulnerabilities through empiri

cal study of

the characteristics of vulherabilities and
through the development of vulnerability

prediction models.

b} / .
~ B)"U
\l

L} []

PR

IST PRIZE
iy N
i ,W\
B/Av AT
PN
y, RN

H/
M/ /
7y

P

The goal is to aid software
in efficiently detecting explo

oractitioners

itable

vulnerabilities through empiri

cal study of

the characteristics of vulherabilities and
through the development of vulnerab|l|ty

prediction models.

The goal is to aid software practitioners
in efficiently detecting exploitable

vulnerabilities through empirical study of
the characteristics of vulnerabilities and
through the development of vulnerablht
prediction models. 2

Collaborators

B Microsoft

Funded by: In cooperation: B Research 9

Where are we going?

« Setting the stage
« Complications in vulnerability research

* The real questions ---
* Where shall we look™
*How shall we look?
* Which vulnerabilities are likely to be exploited?

 Future directions

Design flaws and implementation bugs

Vulnerabilities are rare events (rrefox 2.0)

Neutral (8721)
78.9%

Vulnerable but not
faulty (69) Faulty and
0.6% vulnerable (294)

2.7%

Getting, creating, and cleaning the data @

\J \¢ \!‘F'}""C'J ~ \) co

e

P

Where shall we look?

Larry the Latent David the Detected

Unfiltered Static Analysis Alerts as Predictor

If a developer has such poor coding practices that
he/she causes lots of (unfiltered) static analysis alerts,
you should look carefully in that area for other
implementation bugs and larger design flaws.

Correlations between static analysis alerts
and vulnerability count

(all statistically significant)

Case study 1 Case study 3
(component- Case study 2 (component-
\Y[Sigle level) (file-level) level)
All SA alerts 0.2 0.2 0.2
Security SA alerts 0.2 0.2 0.2

Complexity as Predictor

Security experts say:

* Bruce Schneier
« “Complexity is the worst enemy of security.”

. Dan Geer

« "“Complexity provides both opportunity and hiding places for
attackers.’

Gary McGraw

« “A ... trend |mpact|ng software security is unbridled growth in .
compIeX|ty

Exploited

Complexity and Other Metrics

« 14 code complexity metrics
* Lines of code, cyclomatic complexity, fan-in/fan-out,
coupling, comment density and others

e 3 code churn metrics

* Frequency of file changes, lines of code changed, and new
ines of code

* 11 developer metrics

« Number of developers and other network analysis-inspired
metrics (e.g. betweenness, closeness)

Exploited

Results: Predictability (11 releases Firefox)

1 1 1
E
0.8 W 0.8 2 0.8
<
c
— 06 § 06 9 0.6
g g =
&) & 0.4 B~
0.4 w=4==Combined CCD |——) E 0.4
=== Complexity 0.2 N
0.2 ==te=Code Churn ' £ 0.2
=== Developer L L o _—5'
0 < 0 1 1 1 1 1 1 1 1
R4 R5 R6 R7 R8 RS R10 R1l1 .-g
R4 R5 R6 R7 R8 R9 RI10 RI11 =
Release & R4 R5 R6 R7 R8 R9 R10R11

Release
Release

P Stage > Complications > Where > ____How > Exploited

Results: Predictability (RHEL)

Recall Precision PF
1.00 1.00 100
0.80 0.80 0.80
0.60 0.60 0.60
0.40 0.40 0.40
0.20 0.20 0.20] . l l:
0.00 e 0.00
complexity change developer complexity change developer all complexity change developer

nnnnn

Exploited

Developer Metrics as Predictor

“Given a large enough beta-tester and

co-adeveloper base, almost every problem will ESR——— .
be characterized quickly and the fix obvious to
someone. (-] THE CATHEDRA
Meany eyes make all bugs shallow.” & THE BAZAAR
~Linus’ Law R

Eric Raymond

IR

WITH A FOREWORD BY BOB YOUNG, CHAIRMAN & CEO OF RED HAT, INC.

Exploited > Future

How Many Developers?

edHat

Php
* Metric: NumDevs
The number of distinct developers who
changed a given source code file

In all three case studies:--

Vuinerable files had more developers than neutral files
(p(0.001)

Files changed by 6 or more developers were 4
times more lkely to have a vunerability, (p(0.007)

(---not quite what Linus’Law says---)

Exploited

Unfocused Contributions

redfat

Examined files changed by many developers who were working
on many other files at the time (an “wunfocused contributiori’) =T

Used contribution
network centrality
@ o

(CNBetweenness) — @

Vulnerable files had a higher CNBetweenness | ~<
(p(0.001) than neutral fies. m -

Unfocused Contribution

Exploited

Traditional Code Metrics as Predictor

Metric the
Edit Frequency (EF) 0.292
Total Lines of Code 0.281
Frequency 0.279
Total Complexity 0.276
Repeat Frequency 0.273
Number of Ex-Engineers (NOEE) 0.270
TotalFanIn 0.263
TotalFanOut 0.262
Number of Engineers (NOE) 0.261
Total Global Variables 0.255
Total Churn 0.254
Max Fanln 0.224
Max Complexity 0.207
Max FanOut 0.196
Max Lines of Code 0.194
Outgoing direct 0.168
Total ClassMethods 0.167
Max ClassMethods 0.164
Total InheritanceDepth 0.161
Total BlockCoverage 0.157
Incoming direct 0.156
Tota ClassCoupling 0.154
Total ArcCoverage 0.152
Incoming closure 0.148
Total SubClasses 0.141
Max InheritanceDepth 0.137
Max ClassCoupling 0.137
Max SubClasses 0.124
Level of Org. Code Ownership (OCO) 0.123
Depth of Master Ownership (DMO): 0.101

All correlations values are significant at p<0.0001.

Exploited

Windows Vista

Precision
1.0 - -
081 —— T i What you look at
06 i — 1 will likely be a
1 E | = "

ol I = 1 vulnerability -
0'0_ I I T _%_ I T

Churn Cplx Cov* Dep Org All

Recall

1.0
08 Butmany
061 vulnerabilities will be
0.4 N — T missing.
== ===

T T T T
Churn Cplx Cov* Dep Org All

Exploited

Vulnerability prediction modeling by others

« Without much better results when tested with similar
vulnerability scarcity:

» Dependency structure iy TR
» Text mining - .teChmueS
« Design churn d Y L
« More code metrics '"fOFL“gt'ﬁf‘;: [JEAL

» Neural networks and deep learners e WIVIIN

Infrastructure as Code Security Smells

Spower_username=‘admin’ Admin by default
password=>" Empty password
Spower_password=‘admin’ Hard-coded secret
Sbind_host=‘0.0.0.0’ Invalid IP address binding
g e e ok Suspicious comment
$quantum_auth_url = *http://127.0.0.1:35357/v2.0’ Use of HT TP without TLS
password => ht_md5(Spower_password) Use of weak cryptography algorithm

Exploited

Frequency of Security Smells

30

= [N N
o w o ul

Proportion of Script (%)

Ul

GitHub Modzilla Openstack Wikimedia
T AdminByDefault W EmptyPassword m HardCodedSecret InvalidIPAddressBinding
W SuspiciousComments B HTTPWithoutTLS B WeakCryptoAlgorithm

Exploited

Actionable and/or Predictive Heuristics

» Static Analysis Alerts

 Predictive: Static analysis alerts are indicative of all security
vulnerabilities.

« No pre-processing to determine true positive necessary.

« Code complexity
« Actionable and predictive: Complex code is less secure

382 case 2:

4 CID 1442508 (#1 of 1): Unintentional integer overflow (OVERFLOW_BEFORE_WIDEN)
overflow_before_widen: Potentially overflowing expression get_unaligned_be32 (&power-
>update_tag) * occ->powr_sample_time_us with type unsigned int (32 bits, unsigned) is
evaluated using 32-bit arithmetic, and then used in a context that expects an expression of type u64
(64 bits, unsigned).

© To avoid overflow, cast either get_unaligned_be32 (&power->update_tag) or occ-
>powr_sample_time_us totype u64.

val = get_unaligned_be32 (&power- >update tag) *

Actionable and/or Predictive Heurlstlcs -2

« Developer activity metrics
 Actionable and predictive

 Don't allow too many people to change same
(critical) file

 Watch for the "hummingbirds” that change many
files.

 Traditional code metrics

»\‘ \
 Predictive: Traditional code metrics can be used to flnd vulner bll/tl
- Support that vulnerabilities have the same characteristics as faults

e Infrastructure as code smells
« Actionable: I|dentify and mitigate code smells

Tolenosstod,

VuLV\,’embLLL’cg predlctlow moodels are not Yyet
practical - but patterns of what to watceh for
have beew Loentified.

31

How shall we look™?

Comparison of Vulnerability Discovery
Technigues

. : Vulnerabilities Per Hour
Discovery Technique

Tolven eCHR OpenEMR PatientOS

Exploratory Manual

Penetration Testing 0.00 0.40 .07
Systematic Manual

Penetration Testing 0.94 0.55 0.55
Automated Penetration

Testing 22.00 71.00 N/A
Static Analysis 2.78 32.40 11.15

Other observations

Tolven O openeR PatientOS

Healthcare Innovati

No single technique discovered every type of vulnerability.

Very few individual vulnerabilities discovered with multiple
discovery techniques.

Exploited

Which technique??
%

Implementation bug

Tolenosstod,

owe technigue ts not enough.

36

What will be exploited?

Edwin the Adam the #
Exploitable Attack-prone

Risk-based Attack Surface Approximation

Code artifacts that appear in crash dump stack traces
from a software system are more likely to have
exploitable vulnerabilities than code artifacts that do
not appear in crash dump stack traces.

Where the Exploitable Vulnerabilities Lie

Code Vulnerability
Coverage Coverage
Windows (Binaries)

Firefox (Source Code Files)

Fedora (Packages)

Exploited

Clustering on the Boundary™?

Boundary Code (BC) : percentage of code that appears on the boundary of a software
system

Boundary Vulnerabilities (BV): percentage of vulnerabilities on Boundary Code (BC)

Windows 8

Windows 8. 1

Windows 10

Tolenosstod,

vulnerabilities found on the attack surface are
exp Lottable. Move work wneed to characterize
exploitable and attack-prone vulnerabilities.

45

AAAAA

Exploited

Understanding the 1%

 Vulnerabilities versus non-security defects?
« What technigue was used to detect?
« What was the role of the detector?
« What is the complexity of the patch?
« How much time elapsed from injection until detection?
« How much time elapsed from the detection until the patch?
« What patterns exist in the longitudinal arrival rate?
 Can fault prediction models be used for vulnerabilities?

Exploited

Where shall we look?

Larry the Latent David the Discovered

Training learners to recognize rare target

« SMOTE (Synthetic Minority
Over-sampling)

« Fiddle the training data
(but not the test data)

* Ignore the non-vulnerable files

« Synthesize more examples of
the vulnerable files

Exploited > Future 2

How shall we look™?

Comparison of Vulnerability Discovery
Technigues

. : Vulnerabilities Per Hour
Discovery Technique

OpenMRS 77 77

Exploratory Manual
Penetration Testing
Systematic Manual
Penetration Testing
Automated Penetration
Testing

Static Analysis

Exploited > Future

What will be exploited?

Edwin the Adam the
Exploitable Attack-prone

Characteristics of Exploitable
Vulnerabillities

 Detected versus Exploitable versus Attack-prone
« What vulnerability type (CWE)?

« What severity (CVSS) per CWE type(in the NVD)?
* [ime to discover?

- Distance from the attack surface edge?
 Detectable in how many ways?

- Who detected? Who exploited? What assets involved?

rie

e =¥ (©%
’.Q‘!:} \) A\ 3 =

Summary
'i,@'ll

David the Detected

Ilﬂ Edwin the Explojtable

Graduate studies at NCSU

Degrees

- PhD

- Master of Science

- Master of Computer Science
- Track in Data Science
- Track in Security
- Track in Software

Engineering

- Master of Computer Science
(Distance Education)

- Master of Science in
Computer Networking

- Master of Science in
Computer Networking
(Distance Education)

Certificate

- Computer Science

- Data Science Foundations

Images

https://dementiacarebooks.com/how-to-become-a-dementia-behavior-detective/
https://pixabay.com/vectors/fish-hook-fishing-hook-recreation-2027781/
https://prosportstickers.219signs.com/index.php?route=product/product&product id=37152
http://www.brianbarber.com/illustration/
https://prosportstickers.219signs.com/index.php?route=product/product&product_id=37152
https://drawception.com/game/HM8CfM7pHD/sleepy-fish/

Vectorstock.com/9961574

https://requestreduce.org/categories/fish-trap-clipart.html#toverlayGallery9 post 17509 fish-
trap-clipart-17.png

http://www.e2studysolution.com/news/How-can-I-become-a-Cybersecurity-Expert
https://www.zazzle.com/red star 1st prize round sticker red-217743138139492519
https://www.datanami.com/2016/09/23/past-present-future-finance/
https://easydrawingguides.com/how-to-draw-a-whale/
https://achievingbeautifuldreams.files.wordpress.com/2015/09/50-50.jpg
https://www.merchantmaverick.com/best-high-risk-merchant-account-providers/
https://digest.bps.org.uk/2018/03/21/is-the-future-ahead-not-for-those-born-blind/

58

https://dementiacarebooks.com/how-to-become-a-dementia-behavior-detective/
https://pixabay.com/vectors/fish-hook-fishing-hook-recreation-2027781/
https://prosportstickers.219signs.com/index.php%3Froute=product/product&product_id=37152
http://www.brianbarber.com/illustration/
https://drawception.com/game/HM8CfM7pHD/sleepy-fish/
https://requestreduce.org/categories/fish-trap-clipart.html
http://www.e2studysolution.com/news/How-can-I-become-a-Cybersecurity-Expert
https://www.zazzle.com/red_star_1st_prize_round_sticker_red-217743138139492519
https://www.datanami.com/2016/09/23/past-present-future-finance/
https://easydrawingguides.com/how-to-draw-a-whale/
https://achievingbeautifuldreams.files.wordpress.com/2015/09/50-50.jpg
https://www.merchantmaverick.com/best-high-risk-merchant-account-providers/

Images

e https://www.monitis.com/blog/why-your-small-business-needs-penetration-

testing/
e https://www.foolishbricks.com/day-276-the-needle-in-the-haystack/

* https://betanews.com/2016/06/30/solve-shortage-data-scientists/

* https://www.playstation.com/en-gb/games/need-for-speed-ps4/

* https://www.bizcatalyst360.com/casting-a-wide-net-while-innovating/
* https://simpleprogrammer.com/get-programming-job-no-experience/

* https://towardsdatascience.com/organizing-your-first-text-analytics-project-
ce350dea3ada

* https://www.mnn.com/green-tech/research-innovations/quiz/can-you-pass-
governments-10-simple-science-question-quiz

* https://marketeer.kapost.com/programming-for-marketers/
* http://www.devsanon.com/page/4/

59

https://www.monitis.com/blog/why-your-small-business-needs-penetration-testing/
https://www.foolishbricks.com/day-276-the-needle-in-the-haystack/
https://betanews.com/2016/06/30/solve-shortage-data-scientists/
https://www.playstation.com/en-gb/games/need-for-speed-ps4/
https://www.bizcatalyst360.com/casting-a-wide-net-while-innovating/
https://simpleprogrammer.com/get-programming-job-no-experience/
https://towardsdatascience.com/organizing-your-first-text-analytics-project-ce350dea3a4a
https://www.mnn.com/green-tech/research-innovations/quiz/can-you-pass-governments-10-simple-science-question-quiz

Possible fish

V.

https://encrypted-
tbn0.gstatic.com/images
?2q=tbn:ANd9GcQFNTWQ

https://prosportstickers.219sign GJI6jLxeHmzDNgJCI2Rrg
s.com/index.php?route=product m2Fp5hiwZFBv3XBKOhG
/product&product_id=37152 1PC6

http://www.brianbarber.com/illustra https://drawception.com/gam
tion/ e/HM8CfM7pHD/sleepy-fish/

https://www.designbyhum
ans.com/shop/sticker/mea
n-fish/660022/

https://suzyssitcom.com/2013/
08/can-you-do-the-heimlich-
on-a-fish.html

Q: How to synthesize examples of vulnerable software?
A: SMOTE (Synthetic Minority Over-sampling)

function SMOTE()
while Majority > m do delete any Majority item
while Minority < m do add something_like(any Minority item)

function something_like(X0) 0
{ X1, X2, ... } =k nearest neighbors of X0 X
Z = any of X0 '
Y = interpolate(X0, Z)
returnY

function minkowski_distance(a, b, r
return (> abs(a.i - b.i)r)~ (1/r

Q: How to do this better?
Al: Tune the magic parameters of SMOTE <m,k,r>

61

Case Studies

Three empirical case studies
* RHEL4 Linux kernel, PHP, and Wireshark
* Pre-release version control logs
* Post-release security vulnerabilities WIRESHARK

* Viewed files as vulnerable (>0 vulnerabilities) or neutral (none
found yet)

Number of committers
Source code files 14,454 1,039 2,688

% files vulnerable 3% 6% 3%

Pre-release version

control log data 16 months 2 years 2 years

Years of security data 5 years 3 years, 5 months 3 years, 5 months

Preliminary Findings

* 5 projects — Linux, Firefox, Samba, Qt, Kodi
* Median alert count: 10171

Median Triage Rate: 17.5%

Median Fix Rate: 51.3%

Median Unactionable* Rate: 45.9%

Median Bug Rate: 23.6%

* Median Lifespan: 33 weeks

* Security alerts are Not likely to be fixed more often than non-security alerts
* Security alerts are Not likely to be fixed quicker than non-security alerts

*marked by developer as false positive or intentional

What we currently do with vulnerabilities &smvs)

Prevention Detection Response

Results: Predictability (11 releases Firefox)

1
1
0.8
. w 0.8 W
c
06 _ 06 :g 0.6
g 5 g
2] ~ 04
< . € 04 —4—Combined CCD | ——— .
=== Complexity 0.2
0.2 0.2 ==fe==Code Churn - ’
=== Developer L e e o
0 0 R& RS R6 R7 RS R9 RIO R1l
R4 RS R6 R7 RS R9 R10 R1l R4 RS R6 R7 RS R9 RIO RII el
elease
Release Release
1 1.0 .09
E g 2
S 08 £ 08 g 07
P = M T
& 06 S 06 2 0.5
® < —_
s _ =2 §¥ 03
sz SE 04 g2
= Js|=l=l=-.4:r g g o1
= 02 . 7 — N~
i: 0 1 1 1 1 1 1 1 1 E(:) 0.0 E -0.1
& R4 R5 R6 R7 R8 R9 R10R11 = R4 R5 R6 R7 R8 R9 R10R11 = R4 RS R6 R7 R8 R9 RIORLL
Release Release Release

Results: Predictability (RHEL)

AUC Recall Precision
1.00 1.00 1.00

0.80 0.80 0.80
0.60 0.60 0.60
0.40 0.40 0.40
0.20 020 0.20
0.00 000 L ww— w— .

0.00
complexity change developer

complexity change developer complexity change developer all
FIR LIR

1.00
1.00 1.00

0.80 0.80 0.80

0.60 0.60 0.60

0.40 0.40 0.40

0.00 0.00 000 N

complexity change developer complexity change developer complexity change developer

Exploited

Vulnerability Resolution

Vulnerabilities are fixed at a
faster rate than defects

In Mozilla, vulnerabilities are
resolved 33 % more quickly
than defects.

Exploited

