
Detecting the 1%:
Growing the Science

of Vulnerability
Discovery

Laurie	Williams
laurie_williams@ncsu.edu

Real	people	– Real	Projects	– Real	Impact	1

2

3

Meet	the	“fishy”	vulnerability	characters

Larry	the	LatentDavid	the	Detected	

Edwin	the	Exploitable
Adam	the	Attack-prone

4

The	goal	is	to	aid	software	practitioners	
in	efficiently	detecting	exploitable	
vulnerabilities	through	empirical	study	of	
the	characteristics	of	vulnerabilities	and	
through	the	development	of	vulnerability	
prediction	models.

5

The	goal	is	to	aid	software	practitioners	
in	efficiently detecting	exploitable	
vulnerabilities through	empirical	study	of	
the	characteristics	of	vulnerabilities	and	
through	the	development	of	vulnerability	
prediction	models.

? 6

The	goal	is	to	aid	software	practitioners	
in	efficiently	detecting	exploitable	
vulnerabilities	through	empirical	study	of	
the	characteristics	of	vulnerabilities	and	
through	the	development	of	vulnerability	
prediction	models.

7

The	goal	is	to	aid	software	practitioners	
in	efficiently	detecting	exploitable	
vulnerabilities	through	empirical	study	of	
the	characteristics	of	vulnerabilities	and	
through	the	development	of	vulnerability	
prediction	models.

8

Collaborators

Funded by: In cooperation:
9

Where	are	we	going?
•Setting	the	stage
•Complications	in	vulnerability	research
•The	real	questions	…	
•Where shall	we	look?
•How shall	we	look?
•Which	vulnerabilities	are	likely	to	be	exploited?

•Future	directions	

Stage Complications Where How Exploited Future10

Design	flaws	and	implementation	bugs

Stage Complications Where How Exploited Future11

Vulnerabilities	are	rare	events	(Firefox	2.0)

Stage Complications Where How Exploited Future

Neutral (8721)
78.9%

Faulty but not
vulnerable (1967)

17.8%

Faulty and
vulnerable (294)

2.7%

Vulnerable but not
faulty (69)

0.6%

12

Getting,	creating,	and	cleaning	the	data	😳

Stage Complications Where How Exploited Future13

Where shall	we	look?

Stage Complications Where How Exploited Future

Larry	the	Latent David	the	Detected	

14

Unfiltered	Static	Analysis	Alerts	as	Predictor		
If	a	developer	has	such	poor	coding	practices	that	
he/she	causes	lots	of	(unfiltered)	static	analysis	alerts,	
you	should	look	carefully	in	that	area	for	other	
implementation	bugs and	larger	design	flaws.

Stage Complications Where How Exploited Future15

Correlations	between	static	analysis	alerts	
and	vulnerability	count	

(all	statistically	significant)		

Metric

Case	study	1
(component-

level)
Case	study	2
(file-level)

Case	study	3
(component-

level)

All	SA	alerts 0.2 0.2 0.2

Security	SA	alerts 0.2 0.2 0.2

Stage Complications Where How Exploited Future

Complexity	as	Predictor
Security	experts	say:
• Bruce	Schneier
• “Complexity is	the	worst	enemy	of	security.”

• Dan	Geer
• “Complexity provides	both	opportunity	and	hiding	places	for	
attackers.”

• Gary	McGraw
• “A	...	trend	impacting	software	security	is	unbridled	growth	in	...	
complexity ...”	

17/38
Stage Complications Where How Exploited Future

Complexity	and	Other	Metrics

• 14	code	complexity	metrics
• Lines	of	code,	cyclomatic	complexity,	fan-in/fan-out,	
coupling,	comment	density	and	others

• 3	code	churn	metrics
• Frequency	of	file	changes,	lines	of	code	changed,	and	new	
lines	of	code

• 11	developer	metrics	
• Number	of	developers	and	other	network	analysis-inspired	
metrics	(e.g.	betweenness,	closeness)

18/38
Stage Complications Where How Exploited Future

Results:	Predictability	(11	releases	Firefox)

19/38
Stage Complications Where How Exploited Future

Results:	Predictability	(RHEL)

20/38
Stage Complications Where How Exploited Future

Developer	Metrics	as	Predictor
“Given	a	large	enough	beta-tester	and	
co-developer base,	almost	every	problem	will	
be	characterized	quickly	and	the	fix	obvious	to	
someone.	[…]	
Many	eyes	make	all	bugs	shallow.”

-Linus’	Law	
Eric	Raymond

Stage Complications Where How Exploited Future
21

How	Many	Developers?
•Metric:	NumDevs
The	number	of	distinct	developers	who	
changed	a	given	source	code	file

Files	changed	by 6	or	more	developers	were	4	
times	more	likely	to	have	a	vulnerability,	(p<0.001)

(…not	quite	what	Linus’	Law	says…)

Vulnerable	files	had	more	developers	than	neutral	files	
(p<0.001)

In	all	three	case	studies…

Stage Complications Where How Exploited Future22

Unfocused	Contributions

/fs/exec.c

Unfocused Contribution

Examined	files	changed	by	many developers	who	were	working	
on	many	other	files at	the	time	(an	“unfocused	contribution”)

… … … … ………

Used	contribution	
network	centrality	
(CNBetweenness)

Vulnerable	files	had	a	higher	CNBetweenness
(p<0.001)	than	neutral	files.	

Stage Complications Where How Exploited Future
23

Traditional	Code	Metrics	as	Predictor

Stage Complications Where How Exploited Future
24

Windows	Vista

!

What	you	look	at	
will	likely	be	a	
vulnerability	…	

…	But	many	
vulnerabilities	will	be	
missing.

Stage Complications Where How Exploited Future
25

Vulnerability	prediction	modeling	by	others	

•Without	much	better	results	when	tested	with	similar	
vulnerability	scarcity:
• Dependency	structure
• Text	mining
• Design	churn
• More	code	metrics
• Neural	networks	and	deep	learners

Stage Complications Where How Exploited Future26

Infrastructure	as	Code	Security	Smells
Admin	by	default

Empty	password

Hard-coded	secret	

Invalid	IP	address	binding	

Suspicious	comment	

Use	of	HTTP	without	TLS

Use	of	weak	cryptography	algorithm	

$power_username=‘admin’

password=>‘’

$power_password=‘admin’

$bind_host=‘0.0.0.0’

#FIXME(bogdando) remove these hacks
after switched to systemd service.units

$quantum_auth_url = ‘http://127.0.0.1:35357/v2.0’

password => ht_md5($power_password)

27
Stage Complications Where How Exploited Future

Frequency	of	Security	Smells

0

5

10

15

20

25

30

GitHub Mozilla Openstack Wikimedia

Pr
op

or
tio

n
of

 S
cr

ip
t (

%
)

AdminByDefault EmptyPassword HardCodedSecret InvalidIPAddressBinding
SuspiciousComments HTTPWithoutTLS WeakCryptoAlgorithm

28
Stage Complications Where How Exploited Future

Actionable	and/or	Predictive	Heuristics
• Static	Analysis	Alerts
• Predictive:		Static	analysis	alerts	are	indicative	of	all	security	
vulnerabilities.	
• No	pre-processing	to	determine	true	positive	necessary.

• Code	complexity	
• Actionable	and	predictive:		Complex	code	is	less	secure

Stage Complications Where How Exploited Future29

Actionable	and/or	Predictive	Heuristics	- 2
• Developer	activity	metrics
• Actionable	and	predictive
• Don’t	allow	too	many	people	to	change	same	
(critical)	file
• Watch	for	the	“hummingbirds”	that	change	many	
files.

• Traditional	code	metrics
• Predictive:		Traditional	code	metrics	can	be	used	to	find	vulnerabilities
• Support	that	vulnerabilities	have	the	same	characteristics	as	faults

• Infrastructure	as	code	smells
• Actionable:		Identify	and	mitigate	code	smells

Stage Complications Where How Exploited Future30

Vulnerability prediction models are not yet
practical … but patterns of what to watch for
have been identified.

31

How shall	we	look?

Stage Complications Where How Exploited Future32

Comparison	of	Vulnerability	Discovery	
Techniques	

Discovery	Technique
Vulnerabilities	Per	Hour

Tolven eCHR OpenEMR PatientOS
Exploratory	Manual	
Penetration	Testing 0.00 0.40 .07
Systematic	Manual	
Penetration	Testing 0.94 0.55 0.55
Automated	Penetration	
Testing 22.00 71.00 N/A

Static	Analysis 2.78 32.40 11.15

Stage Complications Where How Exploited Future33

Other	observations

No	single	technique	discovered	every	type	of	vulnerability.	

Very	few	individual	vulnerabilities	discovered	with	multiple	
discovery	techniques.

Stage Complications Where How Exploited Future
34

Which	technique?			

Stage Complications Where How Exploited Future

Design	flaw Implementation	bug

Systematic	manual	
and	exploratory	
penetration	testing

Automated	
penetration	testing	
and	static	analysis

35

One technique is not enough.

36

What	will	be	exploited?

Stage Complications Where How Exploited Future

Edwin	the	
Exploitable

Adam	the	
Attack-prone

37

Risk-based	Attack	Surface	Approximation

Code	artifacts	that	appear	in	crash	dump	stack	traces	
from	a	software	system	are	more	likely	to	have	
exploitable vulnerabilities	than	code	artifacts	that	do	
not	appear	in	crash	dump	stack	traces.

38Stage Complications Where How Exploited Future

39Stage Complications Where How Exploited Future

40Stage Complications Where How Exploited Future

41Stage Complications Where How Exploited Future

42Stage Complications Where How Exploited Future

Where	the	Exploitable	Vulnerabilities	Lie

43

Code													
Coverage

Vulnerability	
Coverage

Windows	(Binaries) 48.4% 94.8%
Firefox	(Source	Code	Files) 14.8% 85.6%
Fedora	(Packages) 8.9% 63.3%

Stage Complications Where How Exploited Future

Clustering	on	the	Boundary?	
Boundary	Code	(BC):	percentage	of	code	that	appears	on	the	boundary	of	a	software	
system
Boundary	Vulnerabilities	(BV):	percentage	of	vulnerabilities	on	Boundary	Code	(BC)

BC BV Ratio

Windows	8
2014 4.5% 17.2% 3.8
2015 4.6% 18.6% 4.0

Windows	8.1
2014 4.6% 16.5% 3.6
2015 6.9% 23.7% 3.4

Windows	10
2014 3.4% 10.5% 3.1
2015 3.9% 25.1% 6.4

44Stage Complications Where How Exploited Future

Vulnerabilities found on the attack surface are
exploitable. More work need to characterize
exploitable and attack-prone vulnerabilities.

45

Stage Complications Where How Exploited Future

The	goal	is	to	aid	software	practitioners
in	efficiently	detecting	exploitable	
vulnerabilities	through	empirical	study	of	
the	characteristics	of	vulnerabilities	and	
through	the	development	of	vulnerability	
prediction	models.

46

Building	Vulnerability	Datasets

47/38
Stage Complications Where How Exploited Future

Understanding	the	1%
•Vulnerabilities	versus	non-security	defects?
•What	technique was	used	to	detect?
•What	was	the	role of	the	detector?
•What	is	the	complexity of	the	patch?
• How	much	time	elapsed	from	injection	until	detection?
• How	much	time	elapsed	from	the	detection	until	the	patch?
•What	patterns	exist	in	the	longitudinal	arrival	rate?
• Can	fault	prediction	models	be	used	for	vulnerabilities?

48/38
Stage Complications Where How Exploited Future

Where shall	we	look?

Stage Complications Where How Exploited Future

Larry	the	Latent David	the	Discovered	

49

Training	learners	to	recognize	rare	target

• SMOTE	(Synthetic	Minority	
Over-sampling)
• Fiddle	the	training	data	
(but	not	the	test	data)
• Ignore	the	non-vulnerable	files
• Synthesize	more	examples	of	
the	vulnerable	files

Stage Complications Where How Exploited Future
50

How shall	we	look?

Stage Complications Where How Exploited Future51

Comparison	of	Vulnerability	Discovery	
Techniques	

Discovery	Technique
Vulnerabilities	Per	Hour

OpenMRS ?? ??
Exploratory	Manual	
Penetration	Testing
Systematic	Manual	
Penetration	Testing
Automated	Penetration	
Testing
Static	Analysis

Stage Complications Where How Exploited Future
52

What	will	be	exploited?

Stage Complications Where How Exploited Future

Edwin	the	
Exploitable

Adam	the	
Attack-prone

53

Characteristics	of	Exploitable	
Vulnerabilities	
• Detected	versus	Exploitable	versus	Attack-prone
•What	vulnerability	type (CWE)?
•What	severity (CVSS)	per	CWE	type(in	the	NVD)?
• Time to	discover?
• Distance from	the	attack	surface	edge?
• Detectable	in	how	many	ways?
•Who	detected?		Who	exploited?		What	assets	involved?

54/38Stage Complications Where How Exploited Future

?

Summary

David	the	Detected	

Edwin	the	Exploitable

Adam	the	Attack-prone

How?Where?

?
55

56

Graduate studies at NCSU

57

Images
• https://dementiacarebooks.com/how-to-become-a-dementia-behavior-detective/
• https://pixabay.com/vectors/fish-hook-fishing-hook-recreation-2027781/
• https://prosportstickers.219signs.com/index.php?route=product/product&product_id=37152
• http://www.brianbarber.com/illustration/
• https://prosportstickers.219signs.com/index.php?route=product/product&product_id=37152
• https://drawception.com/game/HM8CfM7pHD/sleepy-fish/
• Vectorstock.com/9961574
• https://requestreduce.org/categories/fish-trap-clipart.html#overlayGallery9_post_17509_fish-

trap-clipart-17.png
• http://www.e2studysolution.com/news/How-can-I-become-a-Cybersecurity-Expert
• https://www.zazzle.com/red_star_1st_prize_round_sticker_red-217743138139492519
• https://www.datanami.com/2016/09/23/past-present-future-finance/
• https://easydrawingguides.com/how-to-draw-a-whale/
• https://achievingbeautifuldreams.files.wordpress.com/2015/09/50-50.jpg
• https://www.merchantmaverick.com/best-high-risk-merchant-account-providers/
• https://digest.bps.org.uk/2018/03/21/is-the-future-ahead-not-for-those-born-blind/

58

https://dementiacarebooks.com/how-to-become-a-dementia-behavior-detective/
https://pixabay.com/vectors/fish-hook-fishing-hook-recreation-2027781/
https://prosportstickers.219signs.com/index.php%3Froute=product/product&product_id=37152
http://www.brianbarber.com/illustration/
https://drawception.com/game/HM8CfM7pHD/sleepy-fish/
https://requestreduce.org/categories/fish-trap-clipart.html
http://www.e2studysolution.com/news/How-can-I-become-a-Cybersecurity-Expert
https://www.zazzle.com/red_star_1st_prize_round_sticker_red-217743138139492519
https://www.datanami.com/2016/09/23/past-present-future-finance/
https://easydrawingguides.com/how-to-draw-a-whale/
https://achievingbeautifuldreams.files.wordpress.com/2015/09/50-50.jpg
https://www.merchantmaverick.com/best-high-risk-merchant-account-providers/

Images

• https://www.monitis.com/blog/why-your-small-business-needs-penetration-
testing/
• https://www.foolishbricks.com/day-276-the-needle-in-the-haystack/
• https://betanews.com/2016/06/30/solve-shortage-data-scientists/
• https://www.playstation.com/en-gb/games/need-for-speed-ps4/
• https://www.bizcatalyst360.com/casting-a-wide-net-while-innovating/
• https://simpleprogrammer.com/get-programming-job-no-experience/
• https://towardsdatascience.com/organizing-your-first-text-analytics-project-

ce350dea3a4a
• https://www.mnn.com/green-tech/research-innovations/quiz/can-you-pass-

governments-10-simple-science-question-quiz
• https://marketeer.kapost.com/programming-for-marketers/
• http://www.devsanon.com/page/4/

59

https://www.monitis.com/blog/why-your-small-business-needs-penetration-testing/
https://www.foolishbricks.com/day-276-the-needle-in-the-haystack/
https://betanews.com/2016/06/30/solve-shortage-data-scientists/
https://www.playstation.com/en-gb/games/need-for-speed-ps4/
https://www.bizcatalyst360.com/casting-a-wide-net-while-innovating/
https://simpleprogrammer.com/get-programming-job-no-experience/
https://towardsdatascience.com/organizing-your-first-text-analytics-project-ce350dea3a4a
https://www.mnn.com/green-tech/research-innovations/quiz/can-you-pass-governments-10-simple-science-question-quiz

Possible fish

https://prosportstickers.219sign
s.com/index.php?route=product
/product&product_id=37152

https://encrypted-
tbn0.gstatic.com/images
?q=tbn:ANd9GcQFnTWQ
GJI6jLxeHmzDNqJCl2Rrg
m2Fp5hiwZFBv3XBKOhG
1PC6

https://www.designbyhum
ans.com/shop/sticker/mea
n-fish/660022/

https://suzyssitcom.com/2013/
08/can-you-do-the-heimlich-
on-a-fish.html

http://www.brianbarber.com/illustra
tion/

https://drawception.com/gam
e/HM8CfM7pHD/sleepy-fish/ 60

Q: How to synthesize examples of vulnerable software?
A: SMOTE (Synthetic Minority Over-sampling)

function SMOTE()
while Majority > m do delete any Majority item
while Minority < m do add something_like(any Minority item)

function something_like(X0)
{ X1, X2, … } = k nearest neighbors of X0
Z = any of X0
Y = interpolate(X0, Z)
return Y

function minkowski_distance(a, b, r)
return (∑ abs(a.i - b.i)^r) ^ (1/r)

Q: How to do this better?
A1: Tune the magic parameters of SMOTE <m,k,r>

61

Case Studies
Three empirical case studies

• RHEL4 Linux kernel, PHP, and Wireshark
• Pre-release version control logs
• Post-release security vulnerabilities
• Viewed files as vulnerable (>0 vulnerabilities) or neutral (none

found yet)

RHEL4 kernel PHP Wireshark

Number of committers 557 84 19

Source code files 14,454 1,039 2,688

% files vulnerable 3% 6% 3%

Pre-release version
control log data 16 months 2 years 2 years

Years of security data 5 years 3 years, 5 months 3 years, 5 months

62

63

Preliminary Findings

• 5 projects – Linux, Firefox, Samba, Qt, Kodi
• Median alert count: 10171
• Median Triage Rate: 17.5%
• Median Fix Rate: 51.3%
• Median Unactionable* Rate: 45.9%
• Median Bug Rate: 23.6%
• Median Lifespan: 33 weeks

• Security alerts are Not likely to be fixed more often than non-security alerts
• Security alerts are Not likely to be fixed quicker than non-security alerts

*marked by developer as false positive or intentional 64

What	we	currently	do	with	vulnerabilities	(BSIMM8)

Stage Complications Where How Exploited Future

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Prevention Detection Response

26%

33%

48%

%
 u

sa
ge

65

Results:	Predictability	(11	releases	Firefox)

66/38Stage Complications Where How Exploited Future

Results:	Predictability	(RHEL)

67/38
Stage Complications Where How Exploited Future

Vulnerability	Resolution	
Vulnerabilities	are	fixed	at	a	
faster	rate	than	defects
In	Mozilla,	vulnerabilities	are	
resolved	33% more	quickly	
than	defects.

Stage Complications Where How Exploited Future68

