

HPC AND AI CONVERGENCE: WORKLOAD MATTERS

Mark Hill

Sr. Solutions Architect, Higher Education and Research January 2019

HPC AND AI CONVERGENCE

AI - A NEW INSTRUMENT FOR SCIENCE

HPC

- > +40 years of algorithms based on first principles theory.
- > Proven statistical models for accurate results

A

- Neural networks that learn patterns from large data sets.
- > Previously unmanageable data sets.

Dramatically Improves Accuracy and Time-to-Solution

Commercially viable fusion energy

Understanding cosmological dark energy and matter

Clinically viable precision medicine

Improvement and validation of the Standard Model of Physics

Climate/weather forecasts with ultrahigh fidelity

AI - A NEW INSTRUMENT FOR SCIENCE

Requires A Unified Mixed Precision Platform

Ę

GORDON BELL NOMINEES ILLUSTRATE THE NEW NORMAL

THE CPU IS OUT OF GAS

Ę

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

THE CPU IS OUT OF GAS

No Really Running on Fumes

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

PRICE/PERFORMANCE ALREADY CONSTRAINED

CPU trends

- CPU evolution is not able to cope with the increasing demand of performance
- Depending on the application, GPUs can provide better performance and energy efficiency

THE NEW HPC WORKLOAD

A Dramatic Shift from the Past

PREVIOUS NORMAL

- Simulated data sources
- Conventional 64 bit full order ab initio simulation
- Conventional reduced order methods
- All jobs are batch

NEW NORMAL

- A mix of experimental and simulated/emulated data sources
- Conventional 64 bit full order ab initio simulation
- Mixed precision algorithms with new methods for ab initio simulation
- Embedded neural nets within full order ab initio simulation
- Conventional reduced order methods
- Deep Neural Net and Machine learning emulation
- Interactive large scale training (model parallel, data parallel and hyperparameter optimization)

NEW ALGORITHMS AND METHODS ARE EMERGING TO DEFINE A NEW NORMAL IN HPC

Are You Ready for the NEW NORMAL?

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

AN ACCELERATED SYSTEM CAN MAINTAIN OR EXCEED PREVIOUS PERFORMANCE TRAJECTORY

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

BUT NOT ALL APPS can move from the BLUE line to the GREEN line And their "mileage" will vary

BEYOND MOORE'S LAW

Progress Of Stack In 6 Years

2013

 cuBLAS: 5.0

 cuFFT: 5.0

 cuRAND: 5.0

 cuSPARSE: 5.0

 NPP: 5.0

 Thrust: 1.5.3

 CUDA: 5.0

 Resource Mgr: r304

 Base OS: CentOS 6.2

Accelerated Server With Fermi

Measured performance of Amber, CHROMA, GTC, LAMMPS, MILC, NAMD, Quantum Espresso, SPECFEM3D 2019

Accelerated Server with Volta

SENSE OF URGENCY??

Dennard Scaling Ended 13 years ago

Single Threaded Performance is Capped at ~ 2.5 GHZ

Moore's Law is Slowing

Transistor Density Increasing at a Slower Rate

The Economics Have Changed

More Transistors per Generation Cost More to Produce, and Don't Run Any Faster

Power Wall - Patterson ~1996

Accelerated System...

What's Your Plan?

THE KEY DIFFERENCES

Unaccelerated systems

Have homogenous Nodes, where all nodes are the same

Max throughput with minimum variance regardless of workload

All the apps are modeling/simulation

Most apps are batch

Most modeling/simulation apps are double precision

Accelerated systems

Have heterogenous Nodes, where nodes are tuned to the workload

Max throughput and maximize performance variance based on workload

Wide range of apps: modeling/simulation to AI/DL to data science

A Mix of Batch and Interactive jobs

Precision selected to optimize performance

IT'S GOING TO BE 2023 BEFORE YOU KNOW IT

Key focus on Optimum Configuration to Maximize Throughput/Cost

- Maximize Throughput and Minimize Operating Cost within current technology constraints
- Peak FLOPS and Top 500 have to be considered but not become a distraction
- Design an optimum configuration based on current and future workload
- Key Points of Emphasis
 - All codes won't likely be accelerated, so understanding the workload is critical
 - An optimum configuration requires a complete stack that includes a robust ecosystem (hardware, software and humans)
 - A "New HPC" is emerging where convergence of Modeling/Simulation and AI (Data Science) is demonstrating performance gains >>> than Moore's Law

NVIDIA DGX SUPERPOD

AI LEADERSHIP REQUIRES

AI INFRASTRUCTURE LEADERSHIP

Test Bed for Highest Performance Scale-Up Systems

- 9.4 PF on HPL | ~200 AI PF | #22 on Top500 list
- <2 mins To Train RN-50

Modular & Scalable GPU SuperPOD Architecture

- Built in 3 Weeks
- Optimized For Compute, Networking, Storage & Software

Integrates Fully Optimized Software Stacks

Freely Available Through NGC

Autonomous Vehicles | Speech AI | Healthcare | Graphics | HPC

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-pod/nvidia-dgx-superpod-datasheet.pdf

WHAT'S YOUR WORKLOAD?

TYPICAL USAGE PROFILE

Apps May Change but the Shape is the Same

Accelerating as few as 5 Key Applications Benefits 100's to 1000's of Users

3 THINGS

Then how do we make it faster?

 The Resource Scheduler can tell you how well your scheduling jobs on your infrastructure

- What apps are running and how much resource do they consume?
 - Xalt
- How efficiently are they using the resources (CPU/GPU)
 - Profile the code
 - {DL prof, nvprof} -> nsight systems 2.1

XALT

- XALT is an open source tool to collect system usage data
 - <u>https://github.com/Fahey-McLay/xalt</u>
- Maintained by the Texas Advanced Computing Center
- Used by TACC, NICS, NCSA, KAUST, ...
- Commercial support from Ellexus
- Uses LD_PRELOAD env var to run code before and after main()

NV Online Documentation help https://xalt.readthedocs.io/en/latest/

DATABASE QUERIES Top 10 Users

\$ mysql xalt -t -e "SELECT user, syshost AS cluster, COUNT(date) AS count, ROUND(SUM(num_cores*run_time/3600),6) AS core_hours FROM xalt_run WHERE DATEDIFF(NOW(), date) < 7 GROUP BY user, syshost ORDER BY core_hours DESC LIMIT 10;"

_	L	L _	L	L 1
	user	cluster	count	core_hours
	tlee award pspringer chyan eweinberg xan bbadal jianxiangm mclark afroger	psg psg prm psg prm psg psg psg prm prm	434 366 56838 288 709 33 467 300 844 301	5543.335433 1003.509619 527.143689 136.322844 101.652244 92.128333 30.818167 29.292125 21.848478 17.765908
1				· · ·

DATABASE QUERIES Top 20 Executables

\$ mysql xalt -t -e "SELECT exec_path AS program, COUNT(date) AS count, ROUND(SUM(num_cores*run_time/3600),6) AS core_hours FROM
xalt_run WHERE syshost = 'psg' AND DATEDIFF(NOW(), date) < 7 GROUP BY program ORDER BY core_hours DESC LIMIT 20;"</pre>

+		+	+
	program	count	core_hours
	/home/tlee/amber_release/bin/pmemd.cuda_SPFP.MPI	434	5543.335433
	/home/award/NAMD/NAMD_2.13-July26_2018/namd2.13-smp-cuda-memopt	43	267.571533
ĺ	/home/award/NAMD/NAMD_2.13-July26_2018/charmrun	56	228.394044
İ	/home/award/NAMD/NAMD_2.13-July26_2018/namd2.13-multicore-cuda	160	227.582111
ĺ	/home/award/GROMACS/gromacs-2018.2_installation_gcc73_non-mpi_cuda9288/bin/gmx	60	198.022133
ĺ	/datasets/chyan/libjpeg-turbo/build/tjbench	278	136.322267
ĺ	/home/award/NAMD/NAMD_2.13-July26_2018/namd2.13-multicore-cuda-memopt	6	71.763556
	/home/jianxiangm/amber16/bin/pmemd.cuda_SPFP.MPI	21	29.257417
	/cm/extra/apps/CUDA.linux86-64/9.2.88.1_396.26/bin/cuda-gdb	21	26.496056
	/home/award/pdsh/pdsh-2.26_installation_with-ssh_without_rsh/bin/pdsh	21	10.137067
	/tmp/ns.exe	16	3.458225
	/home/nvydyanathan/Work/fftw2/fftw-2.1.5/mpi/rfftw_mpi_test	40	3.455725
	/cm/extra/apps/CUDA.linux86-64/9.1.85_387.26/bin/nvprof	93	3.375119
	/home/mknox2/RELION/relion_installation_SP_sm70_stock_kernel/bin/relion_refine_mpi	10	2.989922
	/home/robv/apps/namd-2.13-multicore-cuda	10	2.608000
	/cm/extra/apps/CUDA.linux86-64/9.2.88.1_396.26/bin/cuda-memcheck	147	2.154222
	/home/jacksontu/quda-build/tests/invert_test	73	1.715750
	/home/karumugam/workspace/repos/gitlab/LAMMPS-PERFLAB_201807/src/lmp_kokkos_cuda_mpi	28	1.697067
	/home/ykang/zhifeng/feedbackLoopCUDA/feedbackLoop	27	1.201483
	/home/bbadal/sam	30	1.082194
-			

GPU TRACKING

• XALT 2.2 introduced GPU tracking based on DCGM

Install DCGM
./configure --with-trackGPU=yes ...

- Be aware of a corner case bug
 - If the user binary uses Google Protobuf and is also linked with DCGM, then the binary will abort due to a Protobuf version mismatch
 - <u>https://github.com/Fahey-McLay/xalt/issues/36</u>

GETTING GOOD DATA TO MAKE GOOD DECISIONS

XALT

- XALT can help you quantitatively understand the application mix running on a system
- XALT answers the question "what's your workload?"

Nsight Systems Introduction

Typical Optimization Workflow

Iterate until desired performance is achieved

Legacy Transition

Ē

Legacy Transition

Nsight Product Family

Tuning an Orchestra of Tasks

Lattice Microbes

Overview

- System-wide application algorithm tuning
 - Multi-process tree support
- Locate optimization opportunities
 - Visualize millions of events on a very fast GUI timeline
 - See gaps of unused CPU and GPU time
- Balance your workload across multiple CPUs and GPUs
 - CPU algorithms, utilization, and thread state
 - GPU streams, kernels, memory transfers, etc
- Multi-platform: Linux & Windows, x86-64 & Tegra
 - Mac (host-only)

Timeline Features

- Compute
 - CUDA 9+ API & GPU workload ranges with correlation
 - Memcpy/set and UVM transfers
 - Libraries: cuBLAS, cuDNN, TensorRT
 - OpenACC
- Graphics
 - Vulkan, OpenGL, Direct3D11, Direct3D12, DXR, V-sync
- · OS
 - Thread state and CPU utilization
 - OS runtime long call trace (>1us, pthread, glibc \rightarrow mmap, file & IO, ...)
 - Call-stack backtraces (>80us)
 - ftrace / ETW (page faults, signal, interrupts, ...)
 - MPI
- User annotations API (NVTX)

Other Key Features

- Thread call-stack periodic sampling
 - Backtraces via hardware LBRs or frame pointers
 - Hot functions

Command Line Interface (CLI)

- No host PC required to record
- No need for root access
- Ready to use in cloud environments
- Works in docker containers
- Usable on HPC systems with access limitations
- Interactive mode

GETTING GOOD DATA TO MAKE GOOD DECISIONS

Nsight

- Nsight Systems Analyze application algorithm system-wide
- Nsight Compute Debug/optimize CUDA kernel

•

٠

٠

Nsight Graphics - Debug/optimize graphics workload

THE IDEAL OUTCOME AT SCALE

The RIGHT number of GPU's at the RIGHT price The RIGHT ratio of GPU's to CPU cores The RIGHT mix of GPU capabilities
TENSOR CORES FOR HPC + AI

GORDON BELL FINALISTS ON NVIDIA GPUS

Mixed Precision Critical to Breaking Records

Weather

Fastest Deep Learning Algorithm

CAK RIDGE

Seismic 1st Soil & Structure Simulation

HISTORY AND FP64

Double-precision floating point (FP64) has been the de facto standard for doing scientific simulation for several decades.

Most numerical methods used in engineering and scientific applications require the extra precision to compute correct answers or even reach an answer.

FP64 also requires more computing resources and runtime to deliver the increased precision levels.

Format of Floating points IEEE754

64bit = double, double precision

HPC SPEEDUPS 4X TO 25X

FP64 Operations Accelerated by Mixed Precision

Speedup 2018 Gordon Bell Finalist on SUMMIT Supercomputer MAGMA - Researchers Achieve 4X Speedup FP64 operations solved in FP16 Mixed Precision FP64 Dense Linear Algebra Functions Iteratively Solve in Reduced Precisions

FP21 ?

Introduction of custom data type: FP21

- Most computation in CG loop is memory bound
 - However, exponent of FP16 is too small for use in global vectors
- Use FP21 variables for memory bound computation
 - Only used for storing data (FP21 × 3 are stored into 64bit array)
 - Bit operations used to convert FP21 to FP32 variables for computation

BFLOAT16? Brain Float 16

bfloat16 has the following format:

•<u>Sign bit</u>: 1 bit

•Exponent width: 8 bits

•<u>Significand</u> precision: 8 bits (7 explicitly stored), as opposed to 24 bits in a classical single-precision floating-point format

The bfloat16 format, being a truncated <u>IEEE 754 single-precision</u> 32-bit float, allows for fast <u>conversion</u> to and from an IEEE 754 single-precision 32-bit float; in conversion to the bfloat16 format, the exponent bits are preserved while the significand field can be reduced by truncation (thus corresponding to <u>round toward 0</u>), ignoring the <u>NaN</u> special case. Preserving the exponent bits maintains the 32-bit float's range of $\approx 10^{-38}$ to $\approx 3 \times 10^{38}$.^[10]

The Intel Papers https://arxiv.org/pdf/1905.12322.pdf https://arxiv.org/pdf/1904.06376.pdf

BFLOAT16? Brain Float 16

The bits are laid out as follows: sign_exponent (8 bits)_fraction (7 bits)

0 0 1 1 1 1 1 0 0 1 0 0 0 0 15 14 7 6 (bit index) 0

Compare to an IEEE 754 single-precision 32-bit float:

And contrast with an IEEE half-precision 16-bit float:

TENSOR CORES BUILT FOR AI AND HPC

Mixed Precision Accelerator - Delivering Up To 5X Throughput of FP32¹

https://arxiv.org/pdf/1806.00187.pdf

MASSIVE PARALLEL ACCELERATION

Volta and Turing GPUs

VOLTA Tensor Cores

Each Tensor Core performs 64 floating point FMA mixed-precision operations per

8 Tensor Cores in an SM perform a total of 1024 floating point operations per clock.

Tensor Cores operate on FP16 input data with FP32 accumulation. The FP16 multiply results in a full precision result that is accumulated in FP32 operations with the other products in a given dot product for a 4x4x4 matrix multiply

	SM							
	L1 Instruction Cache							
	L0 Instruction Cact	he	L0 Instruction Cache					
	Warp Scheduler (32 three	ad/clk)	Warp Scheduler (32 thread/clk) Dispatch Unit (32 thread/clk)					
	Register File (16,384 x	32-bit)	Register File (16,	384 x 32-bit)				
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP	32				
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP	32				
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP	32				
	FP64 INT INT FP32 FP32 T	ENSOR TENSOR	FP64 INT INT FP32 FP	TENSOR TENSOR				
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP					
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP	32				
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP					
	FP64 INT INT FP32 FP32	P/ 1.0/	FP64 INT INT FP32 FP					
	ST ST ST ST ST ST ST	SFU	ST ST ST ST ST ST	F ST ST SFU				
	L0 Instruction Cach Warp Scheduler (32 thre	he had/clk)	L0 Instruction Warp Scheduler (3	Cache 2 thread/clk)				
	Dispatch Unit (32 threa	22-bit)	Dispatch Unit (32 thread/clk)					
		32-01()	Register File (16,	564 X 32-DIL)				
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP					
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP					
	FP64 INT INT FP32 FP32	ENGOD TENGOD	FP64 INT INT FP32 FP	32 TENGOD TENGOD				
	FPG4 INT INT FP32 FP32	CORE CORE	FP64 INT INT FP32 FP	CORE CORE				
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP	32				
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP	32				
	FP64 INT INT FP32 FP32		FP64 INT INT FP32 FP	32				
	LD/ LD/ LD/ LD/ LD/ LD/ LD/ ST ST ST ST ST ST ST	D/ LD/ SFU	LD/ LD/ LD/ LD/ LD/ LD/ ST ST ST ST ST ST ST					
		128KB L1 Data Cache	/ Shared Memory					
	Tex	Tex	Tex	Tex				
		Sum w	/ith					
ED44	Full presiden	ED2	2	Convertes				
FPIO	Full precision	L L L L	2	Convert to				
storage/input	product	accumu	lator	FP32 result				
		more prod	ucts					
		11	1					
F16		+	t					
	\rightarrow			530				
	(×)	→(+		\rightarrow F32				
	\rightarrow							
-F10		\checkmark						
		EDO						
		F 32						

TURING Tensor Cores

The TU102 GPU also features 144 FP64 units (two per SM), which are not depicted in this diagram. The FP64 TFLOP rate is 1/32nd the TFLOP rate of FP32 operations. The small number of FP64 hardware units are included to ensure any programs with FP64 code operates correctly.

The Turing SM supports Concurrent Execution of Floating Point and Integer Instructions

TENSOR CORES FOR HPC Dig Deeper

https://devblogs.nvidia.com/tensor-cores-mixed-precision-scientific-computing/

Dongarra at SC'18 and Slides (Magma)

Harnessing Tensor Cores FP16 Arithmetic to Accelerate Linear Solvers and HPC Scientific Applications

Programming Tensor Cores using NVIDIA's CUDA accelerated-computing API

Tensor Cores in the Volta architecture

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

NVIDIA CUDA-X UPDATES

SOFTWARE TO DELIVER ACCELERATION FOR HPC & AI APPS; 500+ NEW UPDATES

A New High Performance CUDA Library for Tensor Primitives

- Tensor Contractions
- Elementwise Operations
- Mixed Precision
- Coming Soon
 - Tensor Reductions
 - Out-of-core Contractions
 - Tensor Decompositions
- Pre-release version available http://developer.nvidia.com/c

cutensorS	tatus_t c	utensor([reate]	-ensorDe	scripto	r (cute unsi cons cons cuda cute	nsorTenso gned int t int64_ t int64_ DataType nsorOpera	orDescrip numModes t *extent t *stride _t dataTy ator_t un	tor_t* d , , pe, aryOp);	esc,			
cutensorS	tatus_t c	utensor(Contrac	ction (c	uTensor	Handle_t	handle,						
co	nst void*	alpha,	const	void *A	, const	cutenso	rTensorDe	escriptor	<pre>*descA,</pre>	const	int	<pre>modeA[],</pre>	
			const	void *E	, const	cutenso	rTensorDe	escriptor	∗descB,	const	int	<pre>modeB[],</pre>	
co	nst void*	beta,	const	void *C	, const	cutenso	rTensorDe	escriptor	<pre>*descC,</pre>	const	int	<pre>modeC[],</pre>	
				void *D	, const	cutenso	rTensorDe	escriptor	<pre>*descD,</pre>	const	int	<pre>modeD[],</pre>	
cu	tensor0pe	rator_t	opOut,	cudaDa	taType_	t typeCo	mpute, cu	utensorAl	go_t alg	ο,			
vo	id∗ works∣	pace, si	ize_t w	vorkspac	eSize,	cudaStre	am_t stre	eam);					
cutensorS	tatus_t c	utensor	Element	wiseTri	.nary (cuTensor	Handle_t	handle,					
со	nst void*	alpha,	const	void *A	, const	cutenso	rTensorDe	escripto	r ∗descA	, const	: int	modeA[]	,
co	nst void*	beta,	const	void *B	, const	cutenso	rTensorDe	escriptor	*descB,	const	int	<pre>modeB[],</pre>	
co	nst void*	beta,	const	void *C	, const	cutenso	rTensorDe	escriptor	<pre>*descC,</pre>	const	int	<pre>modeC[],</pre>	
				void *D	, const	cutenso	rTensorDe	escriptor	∗descD,	const	int	<pre>modeD[],</pre>	
cu	tensor0pe	rator_t	opAB,	cutenso	r0perat	or_t opA	BC, cudal	DataType_	t typeCo	mpute,	cuda	Stream_t	stream

cuSPARSE

New Improved Sparse BLAS APIs

Introduced generic APIs with improved performance

- SpVV Sparse Vector Dense Vector Multiplication
- SpMV Sparse Matrix Dense Vector Multiplication
- SpMM Sparse Matrix Dense Matrix Multiplication Coming Soon
- SpGEMM Sparse Matrix Sparse Matrix Multiplication

```
cusparseStatus t
cusparseSpMM(cusparseHandle
                                           handle,
                                           transA,
t
             cusparseOperation t
                                           transB,
             cusparseOperation t
                                           alpha,
             const void*
                                           matA.
             const cusparseDpMatDestr t matB,
             const void*
                                           beta,
             cusparseDenseMatDescr t
                                           matC,
             cudaDataType
                                           computeType,
             cusparseSpMMAlg t
                                           alg,
            void*
                                           externalBuffer)
```


TENSOR CORE-ACCELERATED ITERATIVE REFINEMENT SOLVERS

Productization Plans

LU Solver	• ~August 2019 • Real & Complex FP32 & FP64			
Cholesky Solver	 • ~October-November 2019 • Real & Complex FP32 & FP64 			
QR Solver	• ~October-November 2019 • Real & Complex FP 32 & FP64			

AUTOMATIC MIXED PRECISION

MIXED PRECISION TRAINING AND INFERENCE Utilizing Volta and Turing Tensor Cores

Tensor core math accelerates matrix-multiply-and-add operations - 8x higher throughput

Computes many dot-products in parallel

Reduce layer memory bandwidth pressure

Reduce memory consumption

- Activation and gradient tensor sizes halved
- Enable larger minibatch or input sizes

Configurable accumulation and output for FP32 or FP16

MIXED PRECISION CONSIDERATIONS

When to choose single or half precision math?

FP16

W !>> lr * dW

Convnets

FP32

W >> lr * dW

Recurrent

Updating weights

Suggested approach: use FP32, keep master in FP32 and make copy in FP16 for fwd/bwd passes

Activations

Reductions

• L1 + L2 norm, softmax

 May depend on framework input/output type support

Convolutions, MatMul

- FP16 input/output storage
- Keep MatMul M,N,K multiples of 8

ReLU, Sigmoid, Scale, Add... Dynamic range is limited

Not suggested

|f(x)| >> |x| Exp, Square, Log... Normalization or loss layer

Suggested Avoid overflow, op memory limited Probability layers

Inference in FP16

Training in FP32

MIXED PRECISION MAINTAINS ACCURACY

Benefit From Higher Throughput Without Compromise

■ FP32 ■ Mixed Precision

Mixed Precision - Same hyperparameters and learning rate schedule as FP32

ILSVRC12 classification top-1 accuracy.

(Sharan Narang, Paulius Micikevicius et al., "Mixed Precision Training", ICLR 2018)

OVER 4X SPEED UP IN V100 SERVER INFERENCE WITH MIXED PRECISION

Mixed Precision Across Diverse AI Use Cases With Accuracy Unchanged

CPU Comparison: Gold6140, OpenVINO, BS:1, Latency 4ms, 227 images/sec

NVIDIA Server: DGX-1 | GPU: 1x V100-SXM2-16GB | CPU: E5-2698v4

TensorRT: NMT Inference: 19.01_py3(FP32) 18.11_py3(Mixed), Dataset: WMT16 English-German | ResNet50: 18.12_py3(FP32,INT8), 19.01_py3(Mixed), Dataset: ImageNet2012 TensorFlow: ResNet50: 19.01_py3 Hybrid TRT(FP32), 18.11_py3 Hybrid TRT(INT8, Mixed), Dataset: ImageNet2012

AUTOMATIC MIXED PRECISION IN TENSORFLOW

Upto 3X Speedup

TensorFlow Medium Post: Automatic Mixed Precision in TensorFlow for Faster AI Training on NVIDIA GPUs

All models can be found at:

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow, except for ssd-m50-fpn-640, which is here: https://github.com/tensorflow/models/tree/master/research/object_detection

All performance collected on 1xV100-16GB, except bert-squadqa on 1xV100-32GB

Speedup is the ratio of time to train for a fixed number of epochs in single-precision and Automatic Mixed Precision. Number of epochs for each model was matching the literature or common practice (it was also confirmed that both training sessions achieved the same model accuracy). Batch sizes measured as follows. rn50 (v1.5): 128 for FP32, 256 for AMP+XLA; ssd-rn50-fpn-640: 8 for FP32, 16 for AMP+XLA; ncf: 1M for FP32 and AMP+XLA; bert-squadqa: 4 for FP32, 10 for AMP+XLA; gnmt: 128 for FP32, 192 for AMP.

ENABLE AMP

Supported in common frameworks

TensorFlow

PyTorch

export TF_ENABLE_AUTO_MIXED_PRECISION=1
or
os.environ['TF ENABLE AUTO MIXED PRECISION'] = '1'

opt =
tf.train.experimental.enable_mixed_precision_graph_re
write(opt)

model, optimizer = amp.initialize(model, optimizer,
opt_level="01")

with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward()

https://developer.nvidia.com/automatic-mixed-precision

NVIDIA END-TO-END SOFTWARE STACK

Deep Learning Streamlined From Conception to Production at Scale

NGC: GPU-OPTIMIZED SOFTWARE HUB

Simplifying DL, ML and HPC Workflows

ANNOUNCING SUPPORT FOR ARM ENERGY-EFFICIENT SUPERCOMPUTING

NVIDIA GPU Accelerated Computing Platform On ARM

Optimized CUDA-X HPC & AI Software Stack

CUDA, Development Tools and Compilers

Available End of 2019

arm

Hewlett Packard Enterprise

NGC

GRAND CHALLENGES REQUIRE MASSIVE COMPUTING

AUTONOMOUS DRIVING

ASTROPHYSICS

FRAUD DETECTION

MEDICAL IMAGING

NUCLEAR ENERGY

TELECOM

DIFFERENT ROLES. SAME GOALS.

Driving Productivity and Faster Time-to-Solutions

CHALLENGES UTILIZING AI & HPC SOFTWARE

EXPERTISE	INSTALLATION	OPTIMIZATION	PRODUCTIVITY	MAINTAINENCE
				E.
Building Al-centric solutions requires expertise	Complex, time consuming, and error- prone	Requires expertise to optimize framework performance	Users limited to older features and lower performance	IT can't keep up with frequent software upgrades

NGC - SIMPLIFYING AI & HPC WORKFLOWS

EMBEDDING EXPERTISE	FASTER DEPLOYMENTS	OPTIMIZED SOFTWARE	HIGHER PRODUCTIVITY	ZERO MAINTENANCE
¢¢				
Deliver greater value, faster	Eliminates installations. Simply Pull & Run the app	Key DL frameworks updated monthly for perf optimization	Better Insights and faster time-to-solution	Empowers users to deploy the latest versions with IT support

NGC: APPLICATIONS TO END-TO-END SOLUTIONS

NGC: GPU-OPTIMIZED SOFTWARE HUB

Simplifying DL, ML and HPC Workflows

CONTAINERS

CONTAINERS: SIMPLIFYING WORKFLOWS

WHY CONTAINERS

Simplifies Deployments

- Eliminates complex, time-consuming builds and installs

Get started in minutes

- Simply Pull & Run the app

Portable

- Deploy across various environments, from test to production with minimal changes

NGC CONTAINERS: ACCELERATING WORKFLOWS

WHY CONTAINERS

Simplifies Deployments

- Eliminates complex, time-consuming builds and installs

Get started in minutes

- Simply Pull & Run the app

Portable

- Deploy across various environments, from test to production with minimal changes

WHY NGC CONTAINERS

Optimized for Performance

Monthly DL container releases offer latest features and superior performance on NVIDIA GPUs

Scalable Performance

Supports multi-GPU & multi-node systems for scale-up & scale-out environments

Designed for Enterprise & HPC environments

Supports Docker & Singularity runtimes

Run Anywhere

- Pascal/Volta/Turing-powered NVIDIA DGX, PCs, workstations, and servers
- From Core to the Edge
- On-Prem to Hybrid to Cloud

GPU-OPTIMIZED SOFTWARE CONTAINERS

Over 50 Containers on NGC

TensorFlow | PyTorch | more

RAPIDS | H2O | more

NAMD | GROMACS | more

Parabricks

TensorRT | DeepStream | more

ParaView | IndeX | more

THE NGC MODEL REGISTRY

Repository of Popular AI Models

- Starting point to retrain, prototype or benchmark against your own models
- Use As-Is or easily customize
- Private hosted registry for NGC Enterprise accounts to upload, share and version

DOMAIN SPECIFIC | INFERENCE-READY

PRE-TRAINED MODELS

- Domain specific for video analytics and medical imaging
- Use transfer learning and your own data to quickly create accurate Al
- Available models: Organ & tumor segmentation, x-ray classification, classification and object detection for video analytics

TENSORRT MODELS

- Ready for inference with Tensor Cores
- Precision: INT8, FP16, FP32
- Optimized for multiple GPU architectures
- Available Models: ResNet50, VGG16, InceptionV1, Mobilenet

LEARN | BUILD | OPTIMIZE | DEPLOY

MODEL SCRIPTS

- Best practices for training models
- Faster Performance with Optimized Libraries and Tensor Cores
- State-of-the-Art Accuracy

Image Recognition	ResNet-50		
Natural Language Processing	Bert, Transformer		
Object Detection	SSD		
Recommendation	Neural Collaborative Filtering		
Segmentation	Mask R-CNN, UNET-Industrial		
Speech	Tacotron, WaveGlow		
Translation	GNMT	78	עח 📀

IMPORTANT WEB LINKS Share and Promote

- <u>Tensor Cores for Developers</u> (Developer Product Page)
- <u>Automatic Mixed Precision in DL frameworks for Developers</u> (Developer Product Page)
- <u>Deep Learning Examples on Developer Zone</u> (Developer page for tensor core examples)
- <u>Mixed Precision Developer Guide</u> (Developer guide)
- <u>NVIDIA Tesla Deep Learning Product Performance</u> (Get the latest Tesla DL performance info)
- **<u>NVIDIA NGC Model Scripts</u>** (Tensor Core optimized examples on NGC)

	ER NEWS BLOG FORUMS	Q. Join Login
RTX GAMEWORKS		MPUTEWORKS JETPACK DRIVE CLARA OPEN SOURCE
TENSOR CORES		14
Home > Deep Learning > Tensor	r Cores	
DISCOVER	RN TEST DRIVE	IMPLEMENT
Discover How	Tensor Cores Acc	elerate Your Mixed Precision Models
From intelligent assistants to	Tensor oures Acc	
learning models are address complexity. But converging t often leads to undernerform	RTX GAMEWORKS DESIGN/	NS BLOG FORUMS Q Jein Login
You don't have to let those li		
GPUs powered by Tensor Co and greater deep learning p FP16 mixed precision matrix	Get greater GPU acceleration for	eep learning models with Tensor Cores
and reduces Al training time	Learn More	
NVIDIA GPUs with Tensor Co MLPerf, the first industry-wi	Home > Deep Learning > Automatic Nixed	Precision far Deep Learning
Customer Success Sto		
	Automatic Mixe	ed Precision for Deep Learning
fast	Deep Neural Network training has tra maintaining the network accuracy ach	S INVIDIA DEVELOPER NEWS BLOG FORUMS Q Join Login
by leveraging Tensor Cores	precision technique. Repetits of Mixed precision to:	RTX CAMEWORKS DESIGNWORKS VRWORKS COMPUTEWORKS JETRACK DRIVE CLARA OPEN SOURCE
Learn More	Speeds up math-intensive operatio	Horne - Deep Learning - NVDUA Teals Deep Learning Product Performance
Performance Benchm	 Speeds up memory-limited operati Reduces memory requirements for Enabling mixed precision involves two oradient values. 	NVIDIA Tesla Deep Learning Product Performance
MLPe	The automatic mixed precision feature	Deep Lograine Training
NVIDIA Captures Top Spots on I Industry-Wide Al Benchmark b	on twible vota and furing GPUs with	NVIDIA's complete solution stack, from GPUs to libraries, and containers on NVIDIA GPU Cloud (NGC), allows data scientists to quickly get up and running with
Learn More >	TRA	deep learning. NVDAM Testab V100 Tensor Care GPUs leverage mixed precision to accelerate deep learning training throughputs access every framework and every type of neural network. NVDA captured all the top spots on 6 benchmarks submitted to ML Deri, the AI's first industry-wide benchmark, a testament to our GPU-accelerated platform approach.
		NVIDIA Performance on MLPerf Al Benchmarks
		ResNet-50 Time to Solution on V100
NVIDIA Tensor Core GPUs Pour Finelists in Scientific Applicatio		D00-11/02/1000 D00-2 (4e V100)
	Using Automatic I	DDII-24 System 11/12 V1001 72 00000000000000000000000000000000
	TensorFlow	Minubas Hotovej davin Slev men na človi 150 Training taska belavi 18.11-ppl Precision Hose Daskado tricageneratori u davina davina Slev men na človi 150 Training taska belavi 18.11-ppl Precision Hose Daskado tricageneratori
	Automatic Mixed Precision feature is a	
	container, simply set one environment	Training Image Classification on CNNs ResNet-50 Throughout on NVIDIA Teala V100
	As an alternative, the environment var	100ret 10,00
	os.environ['TF_ENABLE_AUTO_MIXED_)	Pyloton 4485 TensirRov 4300
	Automatic mixed precision applies bot necessary.	0 1,000 2,000 3,000 4,000 4,000 4,000 4,000 1,000 11,000 11,000 11,000
	Try with TensorFlow	oze-i, iz visa vozosta, el-anti ki za ten ji kozi oki - za ne v vytoro, siz ne sa ozek ji vytoro, sa o Na ozek ji vytoro za ozek ji vytoro, sa ozek ji vytoro, si za ozek ji vytoro, sa ozek ji v
		ResNet-30 Throughput on NVIDIA Tesia T4
		M00ec 0.417 PyTereh 0.417
		Terserfice 0 400 000 1000 1000 2000 2000 2000 2
		magaya wa wannan magaya wa wannan
		Training Performance
		NVIDIA Dorfarmanco an MI Darchmarke

79

TECHNICAL RESOURCES

Learn, Share and Promote

- Video: <u>Tensor Cores in a Nutshell</u>
- Webinar: <u>Automate Mixed Precision in PyTorch</u>
- DevBlog: <u>ML Perf</u>
- DevBlog: Video Series: Mixed Precision training techniques using Tensor Cores for Deep Learning
- DevBlog: <u>Using Tensor Cores for Mixed Precision Scientific Computing</u>
- DevBlog: <u>New Optimizations to Accelerate Deep Learning Training on NVIDIA GPUs</u>
- DevBlog: <u>Tools for easy mixed precision in PyTorch</u>
- DevBlog: Automatic Mixed Precision in TensorFlow for Faster AI Training on NVIDIA GPUs (TF Medium)
- DevBlog: <u>Automatic Mixed Precision for NVIDIA Tensor Core Architecture in TensorFlow</u>
- DevBlog: GTC on-demand: Real world examples with mixed precision training
- DevBlog: <u>Nsight https://developer.nvidia.com/tools-overview</u>

GTC SESSION RECORDINGS 2019

Recommended GTC On-Demand Talks

Overview:

Mixed precision training with Deep Neural Networks

•<u>Text-to-speech Overview of latest research using Tacotron and Waveglow</u> PyTorch:

Automatic Mixed Precision in PyTorch

• Taking advantage of mixed precision to accelerate training in PyTorch

TensorFlow:

•New automated mixed-precision tools for TensorFlow training

• Automatic mixed precision tools for TensorFlow Training

MXNet:

• MXNet Computer Vision and NLP Models Accelerated by Tensor Cores

•<u>MXNet Computer Vision and Natural Language Processing Models Accelerated with NVIDIA Tensor</u> Cores

