
Software Engineering … Knowledge Engineering  

This research provides in depth knowledge about legacy software systems and their
architectures. In this respect I have done extensive research in both dynamic and static
software system analysis by applying data mining and pattern matching techniques.  

• Dynamic Analysis. This research identifies the implementation of specific software
functionality within a software system without any prior knowledge about the source
code. The approach consists of applying specific sets of scenarios on an instrumented
software system to extract execution traces. Next, sequential pattern mining
algorithm and concept lattice analysis are applied to extract execution patterns and
locate the target source code. We expanded this approach by applying it on service-
oriented architecture (SOA) to measure the quality of web services in service
selection and composition [j5, c37, c26, c23, c20, c18, c17, c16, c15, c14, c12, c27].  

• Static Analysis. This research addresses the design and development of an
incremental software architecture recovery and evaluation environment using data
mining techniques. The environment is interactive and provides: pattern-based
architectural recovery using a query language and approximate graph pattern
matching; optimization clustering; partitioning; and view-based architectural design
evaluation. These techniques have been implemented within my Alborz toolkit [b1,
ch1, j3, j1, c24, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1].  

Abstracts of Selected Publications

Dynamic Analysis of Software Systems

Dynamic Knowledge Extraction from Software Systems using Sequential
Pattern Mining

Kamran Sartipi and Hossein Safyallah
International Journal of Software Engineering and Knowledge Engineering (IJSEKE)  

World Scientific Publisher. vol 20(6), 2010, pages 761-782
(PDF)

This paper presents a novel technique for dynamic analysis of software systems to identify the
implementation of certain software functionality known as software features. In the proposed
approach, a specific feature is shared by a number of task scenarios that are applied on the
software system to generate execution traces. The application of a sequential pattern mining
technique on the generated execution traces allows us to extract execution patterns that reveal the
specific feature functionality. In a further step, the extracted execution patterns are distributed
over a concept lattice to separate feature-specific group of functions from commonly used group
of functions. The use of lattice also allows for identifying a family of closely related features in
the source code. Moreover, in this work we provide a set of metrics for evaluating the structural
merits of the software system such as component cohesion and functional scattering. We have
implemented a prototype toolkit and experimented with two case studies Xfig drawing tool and
Pine email client with very promising results.

Page ! of !1 4

Research Summary Kamran Sartipi PhD., P.Eng.

http://profs.degroote.mcmaster.ca/ads/sartipi/papers/IJSEKE2009.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/ICSM2011.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/SEA2008-DP.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/SEKE2008-2.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/wcre07.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/CSMR2007-Tool.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/wcre06.pdf
http://www.lore.ua.ac.be/Events/PCODA2006/pcoda2006proceedings.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/SEKE2006.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/ICPC2006.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/ICPC2006-Tool.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/SEA2008-WF.pdf
http://www.amazon.com/Software-Architecture-Recovery-Matching-Techniques/dp/3843356971/ref=sr_1_1?ie=UTF8&qid=1296160366&sr=8-1
http://www.intechopen.com/books/data_mining_in_medical_and_biological_research
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/jsm.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/7.IJSEKE.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/SEKE2008-1.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/icsm03.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/syn4pg.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/aserc.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/icsm01.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/wcre01.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/iwpc2001.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/toolDemo2001.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/iwpc2000.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/csmr2000.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/E126.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/IJSEKE2009.pdf

Identifying Distributed Features in SOA by Mining Dynamic Call Trees
Anis Yousefi and Kamran Sartipi

IEEE International Conference on Software Maintenance (ICSM'11). Williamsburg VA, USA
Sept 25-30, 2011. Pages 73-82.

(PDF)
This paper proposes a new approach for identifying the implementation of web service features in
a service oriented architecture (SOA) by mining dynamic call trees that are collected from
distributed execution traces. The proposed approach addresses the complexities of SOA-based
systems that arise from: features whose locations may change due to changing of input
parameters; execution traces that are scattered throughout different service provider platforms;
and trace files that contain interleaving of execution traces related to different concurrent service
users. In this approach, we execute different groups of feature-specific scenarios and mine the
resulting dynamic call trees to spot paths in the code of a service feature, which correspond to a
specific user input and system state. This allows us to focus on a the implementation of a specific
feature in a distributed SOA-based system for different maintenance tasks such as bug
localization, structure evaluation, and performance analysis. We define a set of metrics to assess
structural properties of a SOA-based system. The effectiveness and applicability of our approach
is demonstrated through a case study consisting of two service-oriented banking systems.

An Amalgamated Dynamic and Static Architecture Reconstruction
Framework to Control Component Interactions

Kamran Sartipi and Nima Dezhkam  
IEEE Working Conference on Reverse Engineering (WCRE 2007), Vancouver, Canada

Oct. 28-31, 2007, pages 259-268.
(PDF)

This paper proposes a novel approach that amalgamates dynamic and static views of a software
system. The dynamic view is represented through profiling information that is extracted from
executing a set of task scenarios that cover frequently used soft- ware features. The obtained
profiling information is then embedded into a static view recovery process. We propose a pattern
based structure recovery, as static view, that defines the high-level architecture of the software
system using abstract components and interconnections that is defined using an architecture query
language (AQL). In this con- text, both static and dynamic aspects of the software system are
used to collect software entities into cohesive components whose dynamic interactions can be
controlled. The whole recovery process is modeled as a Valued Constraint Satisfaction Problem
(VCSP). A case study with promising results on the Xfig drawing tool has also been presented.

An Orchestrated Multi-view Software Architecture Reconstruction
Environment

Kamran Sartipi and Nima Dezhkam and Hossein Safyallah
IEEE International Working Conference on Reverse Engineering (WCRE 2006). Benevento, Italy

Oct 23-27, 2006, pages 61-70.
(PDF)

This paper proposes an orchestrated set of techniques and a multi-view toolkit to reconstruct three
views of a software system such as design, behavior, and structure. Scenarios are central in
generating design and behavior views. The design view is reconstructed by transforming a
number of scenarios into design diagrams using a novel scenario schema and generating an object

Page ! of !2 4

http://profs.degroote.mcmaster.ca/ads/sartipi/papers/ICSM2011.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/wcre07.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/wcre06.pdf

base of actors and actions and their dependencies. The behavior view is represented by different
sets of functions that implement different features of the software system corresponding to a set
of feature-specific scenarios that are derived from the design view. Finally, the structure view is
reconstructed using modules and interconnections that are resulted by growing the core functions
related to the software features that are extracted during the behavior recovery. This orchestrated
view reconstruction technique provides a more accurate and comprehensive means for reverse
engineering of a software system than a single view reconstruction approach. As case studies we
applied the proposed multi-view approach on two systems, Xfig drawing tool and Pine email
system.

Dynamic Analysis and Design Pattern Detection in Java Programs
Lei Hu and Kamran Sartipi

International Conference on Software Engineering and Knowledge Engineering SEKE'2008
San Francisco Bay, USA. July 1-3, 2008, pages 842-846

(PDF)
Identifying design patterns within an existing software system can support understandability and
reuse of the system’s core functionality. In this context, incorporating behavioral features into the
design pattern recovery would enhance the scalability of the process. The main advantage of the
new approach in this paper over the existing approaches is incorporating dynamic analysis and
feature localization in source code. This allows us to perform a goal-driven design pattern
detection and focus ourselves on patterns that implement specific software functionality, as
opposed to conducting a general pattern detection which is susceptible to high complexity
problem. Using a new pattern description language and a matching process we identify the
instances of these patterns within the obtained classes and interactions. We use a two-phase
matching process: i) an approximate matching of class attributes generates a list of candidate
patterns; and ii) a structural matching of classes identifies exact matched patterns. One target
application domain can be software product line, which emphasizes on reusing core software
artifacts to construct reference architecture for several similar products. Finally, we present the
result of a case study.

=.=
Static Analysis of Software Systems

Software Architecture Recovery based on Pattern Matching Techniques
Kamran Sartipi

Book: LAMBERT Academic Publishing. 244 pages. ISBN: 978-3-8433-5697-8, 2010.  
(Amazon Site)

On Modeling Software Architecture Recovery as Graph Matching
 Kamran Sartipi and Kostas Kontogiannis

IEEE International Conference on Software Maintenance (ICSM 2003)
Amsterdam, The Netherlands, Sep 22-26, 2003, pages 224-234.

(PDF)
This paper presents a graph-matching model for the software architecture recovery problem.
Because of their expressiveness, the graphs have been widely used for representing both the
software system and its high-level view, known as the conceptual architecture. Modeling the

Page ! of !3 4

http://profs.degroote.mcmaster.ca/ads/sartipi/papers/SEKE2008-2.pdf
http://www.amazon.com/Software-Architecture-Recovery-Matching-Techniques/dp/3843356971/ref=sr_1_1?ie=UTF8&qid=1296160366&sr=8-1
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/icsm03.pdf

recovery process as graph matching is an attempt to identify a sub-optimal transformation from a
pattern graph, representing the high-level view of the system, onto a subgraph of the software
system graph. A successful match yields a restructured system that conforms to the given pattern
graph. A failed match indicates the points where the system violates specific constraints. The
pattern graph generation and the incrementality of the recovery process are the important issues to
be addressed. The approach is evaluated through case studies using a prototype toolkit that
implements the proposed interactive recovery environment.

A User-assisted Approach to Component Clustering
Kamran Sartipi and Kostas Kontogiannis

Journal of Software Maintenance: Research and Practice (JSME), John Wiley Publishers
July/August 2003, vol 15, issue 4, pages 265-295

(PDF)
This paper presents a user assisted clustering technique for software architecture recovery based
on a proximity measure that we call component association. The component association measure
is computed on the shared properties among groups of highly related system entities. In this
approach, the software system is modelled as an attributed relational graph with the software
constructs (entities) represented as nodes and data/control dependencies represented as edges.
The application of data mining techniques on the system graph allows generating a component
graph where the edges are labeled by the association strength values among the components. An
interactive partitioning technique and environment is used to partition a system into cohesive
subsystems where the graph visualization aids and cluster quality evaluation metrics are applied
to assess and fine tune the partition by the user.

A Software Evaluation Model Using Component Association Views
Kamran Sartipi

IEEE International Workshop on Program Comprehension (IWPC 2001)
Toronto, Canada, May 12-14, 2001, pages 259-268

(PDF)
In this paper, we introduce a view-based architectural design evaluation model that allows
quantitatively evaluating and categorizing the design of a software system. The model is based on
the notion of component association, which is a generalization of coupling and cohesion metrics.
The component association is defined as a measure of the overall dependency among high-level
system components such as files, modules, or subsystems with regard to a collection of criteria.
The associations are discovered by applying data mining techniques on a database of data and
control flow dependencies extracted from the software sys- tem. The proposed association-views
and modularity metrics allow the user to evaluate the design quality of a soft- ware system.

Page ! of !4 4

http://profs.degroote.mcmaster.ca/ads/sartipi/papers/jsm.pdf
http://profs.degroote.mcmaster.ca/ads/sartipi/papers/iwpc2001.pdf

