Software Architecture Recovery Using
Data Mining Techniques

Kamran Sartipi
Kostas Kontogiannis

{ksartipi, kostas}@swen.uwaterloo.ca

Approach

We propose a framework for software architecture recovery and restructuring.
In this framework, the user specifies a high level abstraction of the system using
a structural pattern language (we call it Architecture Query Language, AQL)
Then, a pattern matching engine provides an optimal match between the given
pattern and a decomposition of the legacy system entities into modules while

ing the inter/intr odule constraints defined by the pattern.
The data mining technique Apriori is used to limit the search space.
A branch and bound search algorithm models the constraints in the pattern as a
Valued Constraint Satisfaction Problem. The decomposition is performed both at

the system level (groups of files) and subsystem level (groups of func / type / var).

Software Architecture Recovery
Definition: Extracting high-level information from some
low-level software representation such as source code

® Constitutes a major task in software maintenance
W Should relate to specific re-engineering requirements
W Major approaches:

o Clustering techniques based on static and dynamic properties.

® Constraint ion to satisfy defined constrai
© Query-based techniques based on specialized queries and

high-level architectural styles

Proposed framework for Recovery and Restructuring

Mental model

Target system Architectural query

AQL query
C/Pascal / .. specification
-
C/ Pascal

parser AQL
Concrete parser
architecture
AST AST

Pre-process

High-level
Analysis engine schema
(search & matching)

Source model

Data Mining Technique (Apriori)

| Discovery of Interesting and non-trivial relations among
data in large databases.
] a fundamental data mining algorithm [Agrawal]

e Frequent itemsets: a collection of items that all exist in

Application of Data Mining in Recovery Process

W Data mining allows to reveal cohesive groups of entities in the form of
bi-partite sub-graphs in the graph of the target system.

W The bi-partite sub-graphs are the basis for extracting the source model for
the matching process.

W The source model is a forest of trees, and each tree consists of all entities
that are associated with an individual node in the bi-partite sub-graph.

W Each tree contains all possible entities that can be put in a module,

we call it the The root of the tree is called a

® basket (func) of items
e func, type, var e item (func, type, var) in a basket
- func: calls funcs / uses types / ~-— func: calls func / uses types /
uses vars uses vars

(a) Un-processed graph
of the target system

(b) Bi-partite sub-graphs resulted from
applying Apriori algorithm on graph (a)

Model of the matching process

mA algorithm performs an exhaustive search to find the
best candidate domains for the modules in the query.
M The criteria for domain-selection include:
@ High average of the association values between each entity in a
domain and the corresponding
® Low level of scattering of the domain entities into the system files, and
® Large domain size

W The matching process selects the entities for each module based on high
association value and high average clustering value to the group of
entities already selected for the module.

W Each allocation of an entity to a module must satisfy both the similarity-
constraints (i.e., association and clustering values) and the
link-constraints (i.e., abstract links between modules in the query).

M Import s/ Exports are manifestation of link-constraints between modules.

Main-seed —

call
use

MODULE: M1
MAIN-SEED: func search_class ()

2%, IMPORTS:
0 < FUNCTIONS: A
-8) ?F2(1..3) :;5(3 6) M2

Tvpes

2 ?T1(0.4) M3
T VARIABLES v
0.4, '\

> ExPORTS
& ?F3(0.5) FUNCTIONS: EF,
Fii2.9) M3

i S
[>~
= & TYPES: ET
o VARIABLES: v
B

CONTAINS:
export impor FUNCTIONS: func $CF(15.. 18),
() ‘ func search_class (),
module func inherit_facts (),
link
TYPES: type SCT(0..2)
VARIABLES: var $CV(3..5)
END-ENTITY
m Aquery is modeled as a multi-graph of nodes and edges
= Each node represents an abstract module to be instantiated with system entities.
= Each edge represents a group of link-constraints between two modules in the form of
import / export of resources (func / type / var).
= Each module has one (or more) main-seeds which determine the domain of entities to
be putin the module, and zero or more seeds which specialize the query.

User interfaces

® Web browser (Netscape):
o Hypertext links to actual entities in the source files.

® Various information: distribution of recovered entities into files, browsing the
query, statistical data for link-constraint violation, links between modules.

WGraph visualizer (RIGI): property of recovered entities (bi-partite sub-graphs.

Case study: CLIPS, 40 KLOC in C

W The graph of a recovered module with 18 functions using RIGI graph visualizer

m Aquery and its solution represented using Netscape browser

each basket of a group of baskets ltemset Baskets

D 1356
5 7
ﬂ D 12358
- o 1,3,4,5
Baskets @ 13,5

© Discovery of association rules (X -->Y)
e.g., 60% of the transactions that contain the set)
also contain the set o

1 2 3
2= oz |

ie., Q e ° with the confidence level of 60%

44444222111
N3 a5 60 12131 89
10

Association Entity ID
value

Module 1 Module 2

10 112 —

called-by
used-by
shared child
sibling

Assigning entities to modules

Shared: deleted from module

Placeholder

export import

£

.

2 e
sa1e seme
S

