
     Software Architecture Recovery Using  
                  Data Mining Techniques 

Kamran Sartipi 
Kostas Kontogiannis 

University of Waterloo 

n  Data mining allows to reveal cohesive groups of entities in the form of  

     bi-partite sub-graphs in the graph of the target system. 

n  The bi-partite sub-graphs are the basis for extracting the source model for 

     the matching process.     

n  The source model is a forest of trees, and each tree consists of all entities  

     that are associated with an individual node in the bi-partite sub-graph. 

n  Each tree contains all possible entities that can be put in a module, 

    we call it the domain of a module. The root of the tree is called a main-seed. 

 

n   A query  is modeled as a multi-graph of nodes and edges 

n  Each node represents an abstract module to be instantiated with system entities. 

n  Each edge represents a group of link-constraints between two modules in the form of  
    import / export of resources (func / type / var).  
n  Each module has one (or more) main-seeds which determine the domain of  entities to 
    be  put in the module, and zero or more seeds which specialize the query. 

Conceptual Architectural pattern 

{ksartipi, kostas}@swen.uwaterloo.ca 

We propose a framework for software architecture recovery and restructuring.   
In this framework, the user specifies a high level abstraction of the system using  
a structural pattern language (we call it Architecture Query Language, AQL).  
Then, a pattern matching engine provides an optimal match between the given  
pattern and a decomposition of the legacy system entities into modules while  
satisfying the inter/intra-module constraints defined by the pattern.   
The data mining technique Apriori is used to limit the search space.  
A  branch and bound  search algorithm models the constraints in the pattern as a  
Valued Constraint Satisfaction Problem. The decomposition is performed both at  
the system level (groups of files) and subsystem level (groups of func / type / var).  

Proposed framework for Recovery and Restructuring 

    Analysis engine 
(search  & matching) 

Mental model 

AQL query  
specification 

 AQL 
parser 

 Target system Architectural query 

C / Pascal 
parser 

AST 

Source model 

AST 

  Concrete 
architecture 

High-level  
   schema 

Pre-process 

C / Pascal / ... 
? 

5 

Data Mining Technique (Apriori) 

  1, 2, 3, 5, 8 
  1,  3,  5, 6 

  1, 3, 5 
  1, 3, 4, 5 

Itemset      Baskets 

n  Discovery of Interesting and non-trivial relations among 
    data in large databases. 
n  Apriori: a fundamental data mining algorithm [Agrawal] 

l  Frequent itemsets: a collection of items that all exist in  
   each basket of a group of baskets 

  1       2        3       4        5       6        7      8 

l  Discovery of association rules (X --> Y)  
     e.g., 60% of the transactions that contain the set 
     also contain the set  
                            
    i.e.,                             with the confidence level of 60% 

Baskets 

--> 

Application of Data Mining in Recovery Process 

func, type, var 
func: calls funcs / uses types / 
         uses vars 

basket (func) of items 
item (func, type, var) in a basket 
func: calls func / uses types /  
uses vars 

(a) Un-processed graph  
of the target system 

 (b) Bi-partite sub-graphs resulted from 
applying Apriori algorithm on graph (a) 

■  A domain-selection algorithm performs an exhaustive search to find the       
    best candidate domains for the modules in the query.  
■  The criteria for domain-selection include: 

●  High average of the association values between each entity in a   
    domain and the corresponding  main-seed, 

●  Low level of scattering of the domain entities into the system files, and  

●  Large domain size 

■  The matching process selects the entities for each module based on high  
    association value and high average clustering value to the group of  
    entities already selected for the module.  

■   Each allocation of an entity to a module must satisfy both the similarity- 
     constraints (i.e., association and clustering values) and the     

     link-constraints (i.e., abstract links between modules in the query). 

■  Import s/ Exports are manifestation of link-constraints between modules. 

Shared: deleted from module   

 16 

9       10      11 

8 

12      13     16 

5        6        
7 

1        3        
4 

 2 

12      1        2 

4 4 4 4 4 4 2 2 2 1 1 1 
1     3     4    5     6    7    12   13  16    8    9    
10 

2 Main-seed 

Association 
value 

 Entity ID 

call 
use 
called-by 
used-by 
shared child 
sibling 

 10    11   12          

Module 1 Module 2 

export import 

Placeholder  

Assigning entities to modules 

Model of the matching process 

MODULE: M1 
    MAIN-SEED:         func   search_class () 
 
    IMPORTS: 
       FUNCTIONS:      func   ?IF, 
                                   func   ?F5(3..6)  M2 
       TYPES:               type   ?IT,  
                                   type   ?T1(0..4)   M3 
       VARIABLES:      var     ?IV 
                           
    EXPORTS: 
       FUNCTIONS:      func   ?EF,  
                                   func   ?F1(2..5)  M3 
      TYPES:                type   ?ET 
      VARIABLES:       var     ?EV 
 
   CONTAINS: 
      FUNCTIONS:       func   $CF(15 .. 18), 
                                   func    search_class (), 
                                   func    inherit_facts (), 
  
      TYPES:                type   $CT(0 .. 2) 
      VARIABLES:       var     $CV(3 .. 5) 
 
END-ENTITY 
     

?F1(2..5) 

?T1(0..4) 

?F4(3..4) 

?F5(3..6) 

?F2(1..3) 

?T
2(

1.
.3

) ?F3(0..5) 

M4 M3 

M2 

M1 

export import 

module 
link 

Architecture Query Language (AQL) 

n  Web browser (Netscape): 

l  Hypertext links to actual entities in the source files. 

l  Various information: distribution of recovered entities into files,  browsing the  
     query, statistical data for link-constraint violation, links between modules.  

n Graph visualizer (RIGI): property of recovered entities (bi-partite sub-graphs. 

User interfaces 

Software Architecture Recovery 
Definition: Extracting high-level information from some  
low-level software representation such as source code 

n  Constitutes a major task in software maintenance 

n  Should relate to specific re-engineering requirements 

n  Major approaches: 

l  Clustering techniques based on static and dynamic properties. 

l  Constraint satisfaction to satisfy user-defined constraints. 

l  Query-based techniques based on specialized queries and 

    high-level architectural styles   

Approach 

Case study: CLIPS, 40 KLOC  in C  

n  The graph of a recovered module with 18 functions using RIGI graph visualizer 

n  A query  and its solution represented using Netscape browser 

  Query  Solution 


