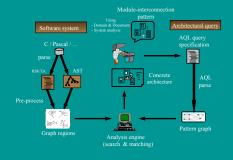
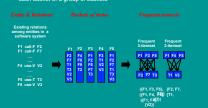


A Query-based Approach to **Software Architecture Recovery**


Software Architecture Recovery

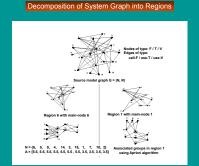
Software Architecture Recovery Definition: Extracting high-level information from some iow-level software representation such as source code Definition: Extracting high-level information form some Approach (Definition: Extracting high-level information) (Definition: Comparison of the system as graph of modules and interconnections, where each module (one node of graph) represents a group of placeholders for the system entities (i.e., func, type, var) to be instantiated, and each bundle-of-interconnections between two modules (one edge of graph) represents diacontrol-dependencies. The minimax sizes and the types of placeholders / interconnections are free parameters to be decided by the user. This abstract graph (defined using our Architecture Oueyr Language, AOL) is the nexpanded into a pattern graph for a part or whole system architecture to be recovered. The architectural recovery process this to find a series of graph edit operations (i.e., node/edge insertion/deletion) with minimum cost that if applied on the pattern graph. The method is known as inexed graph matching. A branch and bound search algorithm with association-based score function is used for the matching process. The system is find to a group of subsystems of files, then each subsystem can be decomposed into a number of modules of functions , aggregate types and global variables.

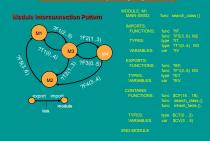
Framework for Architectural Recovery ain & Document (QUERY GENERATION)



Scenario for Architectural Recovery Based on Pattern Matching

Association using Data Mining Technique (Apriori)


- data in large databases.
 Frequent itemsets: a collection of items that all exist in each basket of a group of baskets


- Software System as Attributed Relational Graph An "ARG" is a six-tuple G = (N, R, A, E, f, g):
- N = {n, n, n, ..., n,}: attributed vertices (nodes)
 R = {n, n, ..., n}: directed attributed edges (relations)
 A & E: alphabets for node & edge attributes
 f & g: node & edge labeling functions

Example of attributes in software system

- Label: a unique string for nodes only
 Type: identifiers to classify nodes and edges
 Location: two integers for *file#* and *line#*
 - f(ns) = ("/u/.../foo", F, 6, 47) g(r₂₈) = ((ns, n₃₄)) = (call-F, 6, 92)

Architecture Query Language (AQL)

A guery is modeled as a multi-graph of nodes and edges

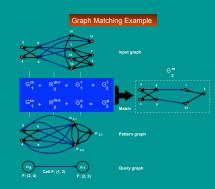
- Each node represents an abstract module to be instantiated with system entities Each edge represents a group of link-constraints between two modules in the form of
- be put in the module, and zero or more seeds which specialize the query.

Graph Matching

- *t* G → G^{*} maps the nodes and known
 Exact graph matching:
 Exact set of nodes and edges of G that is isomorphic to G^{*}
 Inexact graph matching:
 An optimal sequence of graph edit operations, such as: insertion / deletion / relabeling of nodes and edges of G so that G and G^{*} become isomorphic

Kamran Sartipi

Kostas Kontogiannis


University of Waterloo {ksartipi, kostas}@swen.uwaterloo.ca

Graph Matching Process

At each phase i of the matching process, incremental input graph Gⁱ, is inexactly matched against incremental pattern graph Gⁱ which results in incremental matched

- We perform graph edit operations on:
 expanded graph G^x_i and its glue edges R^{max}_i
 to match them with
- selected region G_{gi}^r and its glue edges $R_{i}^{m \cdot r}$

Experiment with Xfig 75 KLOC: Pattern ... Query ... Architecture

Result Xfig: Netscape browser and Rigi graph visualizer

