
A Query-based Approach to
Software Architecture Recovery

Kamran Sartipi
Kostas Kontogiannis

University of Waterloo

n  A query is modeled as a multi-graph of nodes and edges

n  Each node represents an abstract module to be instantiated with system entities.

n  Each edge represents a group of link-constraints between two modules in the form of
 import / export of resources (func / type / var).
n  Each module has one (or more) main-seeds which determine the domain of entities to
 be put in the module, and zero or more seeds which specialize the query.

{ksartipi, kostas}@swen.uwaterloo.ca

Module interconnection Pattern
MODULE: M1
 MAIN-SEED: func search_class ()

 IMPORTS:
 FUNCTIONS: func ?IF,
 func ?F5(3..6) M2
 TYPES: type ?IT,
 type ?T1(0..4) M3
 VARIABLES: var ?IV

 EXPORTS:
 FUNCTIONS: func ?EF,
 func ?F1(2..5) M3
 TYPES: type ?ET
 VARIABLES: var ?EV

 CONTAINS:
 FUNCTIONS: func $CF(15 .. 18),
 func search_class (),
 func inherit_facts (),

 TYPES: type $CT(0 .. 2)
 VARIABLES: var $CV(3 .. 5)

END-MODULE

?F1(2..5)

?T1(0..4)

?F4(3..4)

?F5(3..6)

?F2(1..3)

?T
2(

1.
.3

) ?F3(0..5)

M4 M3

M2

M1

export import

module
link

Architecture Query Language (AQL)

The user specifies a high level abstraction of the system as a graph of modules
and interconnections, where each module (one node of graph) represents a group
of placeholders for the system entities (i.e., func, type, var) to be instantiated, and
each bundle-of-interconnections between two modules (one edge of graph)
represents data/control-dependencies. The min/max sizes and the types of
placeholders / interconnections are free parameters to be decided by the user.
This abstract graph (defined using our Architecture Query Language, AQL)
is then expanded into a pattern graph for a part or whole system architecture to be
recovered. The architectural recovery process tries to find a series of graph edit
operations (i.e., node/edge insertion/deletion) with minimum cost that if applied on
the pattern graph, the result would match with a sub-graph of the system graph of
entities and relationships. The method is known as inexact graph matching.
A branch and bound search algorithm with association-based score function is used
for the matching process.The system is first decomposed into a group of subsystems
of files, then each subsystem can be decomposed into a number of modules of
functions, aggregate types and global variables.

Software Architecture Recovery
Definition: Extracting high-level information from some
low-level software representation such as source code

Approach

(PRE-PROCESS)
Generating

database of
graph-regions

using
Data Mining (PATTERN MATCHING)

Matching
sub-regions against
the constrained form

of AQL query

(QUERY GENERATION)
Generating

Module--Interconnection
pattern using Clustering

(DISTRIBUTION)
Tool distributes

un-grouped entities
&

User relocates
grouped entities
(among modules)

AQL query

Region
database

Domain & Document

Softwar
e

System

Matched
graph

Architecture

Framework for Architectural Recovery

Scenario for Architectural Recovery Based on Pattern Matching

 Analysis engine
(search & matching)

Module-interconnection
pattern

AQL query
specification

 AQL
parse

 Software system Architectural query

 parse

AST

Graph regions

 Concrete
architecture

 Pattern graph

Pre-process

C / Pascal / ...
?

RSF/TA

 Using
- Domain & Document
- System analysis

Association using Data Mining Technique (Apriori)

n  Discovery of Interesting and non-trivial relations among
 data in large databases.
n  Frequent itemsets: a collection of items that all exist in
 each basket of a group of baskets

F4
F5
F9
T2

F3
T1
V2
V3

F1
F2
F5
F7
T3

F2
F7
T1
T3
V2
V3

F1
F2
F7
T1
T3
V3

F1 F2 F3 F4 F5

Baskets of items

Existing relations
among entities in a

software system

F1 call-F F2
F1 call-F F7

….
….

F4 use-V V2
….
….

F5 use-T T3
F5 use-V V3

Entity & Relations

F1 F5

F7 F2 T3

F3 F4

T1

F5

V3

F1

Frequent
3-itemset

Frequent
2-itemset

({F1, F3, F5}, {F2, F7,
T3}) ({F1, F4, F5}, {T1,

V3}) ({F1, F4},
{V2})

Frequent itemsets

Example of attributes in software system:

Software System as Attributed Relational Graph

An “ARG” is a six-tuple G = (N, R, A, E, f, g):

§  Label: a unique string for nodes only
§  Type: identifiers to classify nodes and edges
§  Location: two integers for file# and line#

f(n5) = (“/u/…/foo”, F, 6, 47)
g(r28) = ((n5, n34)) = (call-F, 6, 92)

§  N = {n1, n2, …, nn}: attributed vertices (nodes)
§  R = {r1, r2, …, rm}: directed attributed edges (relations)
§  A & E: alphabets for node & edge attributes
§  f & g: node & edge labeling functions

Decomposition of System Graph into Regions

N = {6, 5, 9, 4, 14, 3, 18, 1, 7, 10, 2}
A = [5.5, 5.5, 5.5, 5.5, 5.5, 5.5 , 5.5, 3.5, 3.5, 3.5, 3.5]

 Region 6 with main-node 6 Region 1 with main-node 1

Associated groups in region 1
using Apriori algorithm

Nodes of type: F / T / V
Edges of type:
 call-F / use-T / use-V

 Source model graph G = (N, R)

Graph Matching

§  f: G à G’ maps the nodes and relations of graph G onto graph G’:
§ Exact graph matching:

•  Exact set of nodes and edges of G that is isomorphic to G’
§  Inexact graph matching:

•  An optimal sequence of graph edit operations, such as:
 insertion / deletion / relabeling of nodes and edges of G so that
 G and G’ become isomorphic

G m
2

Match
G p

2
G m

1
m-x R
2 + + = G x

2

G I
2

G m
1

m-r R
2

+ + = G r
1

16

1

13

10
7

11

2 9

6

4

5

9

6

4

5

n 2,2

n 2,1

n 2,3

9

6

4

5 1

13

2

Call-F: (1, 2)
F: (2, 4) F: (2, 3)

n 6 n 1

Pattern graph

Input graph

Query graph

Graph Matching Example

Experiment with Xfig 75 KLOC: Pattern … Query … Architecture

S1 S2

S3 S4

1

7 2

10

2

1

u-elastic
u_drag
e_scale

127 funcs

f_util
f_read
f_readold

72 funcs

w_expert
w_print
w_file
w_library

92 funcs

e_edit
e_update
e_flip

121 funcs

 Initial pattern

?R1(1..10)

S1 S2

S3 S4

?R2(7..20)

(3..10)

(3..10) (3..10)

(4..10)

?R3(5..15)

?R
4(

1.
.5

)

?R5(10..20)

AQL query

1

S1 S2

S3 S4 R5(16)

2

R
4(

5)

R1(5)

10

8

7

3
R2(20)

12

10 files
285 funcs

9 files
168 funcs

8 files
252 funcs

9 files
168 funcs

R3(15)

Concrete architecture

2

3

Result Xfig: Netscape browser and Rigi graph visualizer

Query

Solution

Xfig
Sub-system

recovery

G
I
i G

m
i-1

m-r R i + + G
r
g i

=

Gp
i Gm

i-1 R m-x
i + + Gx

i =
Gm

i

Match

Graph Matching Process

§  At each phase i of the matching process, incremental input graph GI
i is inexactly

matched against incremental pattern graph Gp
i which results in incremental matched

graph Gm
i

§  We perform graph edit operations on:
 expanded graph Gx

i and its glue edges R m-x
 to match them with
 selected region Gr

gi and its glue edges Rm-r

i

i

