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n   A query  is modeled as a multi-graph of nodes and edges 

n  Each node represents an abstract module to be instantiated with system entities. 

n  Each edge represents a group of link-constraints between two modules in the form of  
    import / export of resources (func / type / var).  
n  Each module has one (or more) main-seeds which determine the domain of  entities to 
    be  put in the module, and zero or more seeds which specialize the query. 
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Module interconnection Pattern 
MODULE: M1 
    MAIN-SEED:         func   search_class () 
 
    IMPORTS: 
       FUNCTIONS:      func   ?IF, 
                                   func   ?F5(3..6)  M2 
       TYPES:               type   ?IT,  
                                   type   ?T1(0..4)   M3 
       VARIABLES:       var     ?IV 
                           
    EXPORTS: 
       FUNCTIONS:      func   ?EF,  
                                   func   ?F1(2..5)  M3 
      TYPES:                type   ?ET 
      VARIABLES:        var     ?EV 
 
   CONTAINS: 
      FUNCTIONS:       func   $CF(15 .. 18), 
                                   func    search_class (), 
                                   func    inherit_facts (), 
  
      TYPES:                type   $CT(0 .. 2) 
      VARIABLES:        var     $CV(3 .. 5) 
 
END-MODULE 
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Architecture Query Language (AQL) 

The user specifies a high level abstraction of the system as a graph of modules  
and interconnections, where each module (one node of graph) represents a group  
of placeholders for the system entities (i.e., func, type, var) to be instantiated, and  
each bundle-of-interconnections between two modules (one edge of graph)  
represents data/control-dependencies. The min/max sizes and the types of  
placeholders / interconnections are free parameters to be decided by the user.    
This abstract graph (defined using our Architecture Query Language, AQL) 
is then expanded into a pattern graph for a part or whole system architecture to be 
recovered.  The architectural recovery process tries to find a series of graph edit  
operations (i.e., node/edge insertion/deletion) with minimum cost that if applied on  
the pattern graph, the result would match with a sub-graph of the system graph of  
entities and relationships. The method is known as inexact graph matching.  
A branch and bound search algorithm with association-based score function is used 
for the matching process.The system is first decomposed into a group of subsystems 
of files, then each subsystem can be decomposed into a number of modules of 
functions, aggregate types and global variables.    

Software Architecture Recovery 
Definition: Extracting high-level information from some  
low-level software representation such as source code 
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Association using Data Mining Technique (Apriori) 

n  Discovery of Interesting and non-trivial relations among 
    data in large databases. 
n  Frequent itemsets: a collection of items that all exist in  
   each basket of a group of baskets 
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Example of attributes in software system: 

Software System as Attributed Relational Graph  

An “ARG” is a six-tuple  G = (N, R, A, E, f, g ): 

§  Label: a unique string for nodes only 
§  Type: identifiers to classify nodes and edges 
§  Location: two integers for file# and line# 

f(n5) = (“/u/…/foo”, F, 6, 47) 
g(r28) = ((n5, n34)) = (call-F, 6, 92) 

§  N = {n1, n2, …, nn}: attributed vertices (nodes) 
§  R = {r1, r2, …, rm}: directed attributed edges (relations) 
§  A & E: alphabets for node & edge attributes 
§  f & g: node & edge labeling functions 

Decomposition of System Graph into Regions 

N = {6,    5,    9,    4,    14,   3,   18,   1,    7,    10,  2} 
A = [5.5, 5.5, 5.5, 5.5, 5.5, 5.5 , 5.5, 3.5, 3.5, 3.5, 3.5] 

   Region 6 with main-node 6    Region 1 with main-node 1 

Associated groups in region 1 
using Apriori algorithm 

Nodes of type: F / T / V 
Edges of type:  
     call-F / use-T / use-V 

   Source model graph G = (N, R) 

Graph  Matching  

§  f: G à G’ maps the nodes and relations of graph G onto graph G’: 
§ Exact graph matching:  

•  Exact set of nodes and edges of G that is isomorphic to G’ 
§  Inexact graph matching: 

•  An optimal sequence of graph edit operations, such as:   
    insertion / deletion / relabeling of nodes and edges of G so that 
    G and G’ become isomorphic 
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Graph Matching Example  

Experiment with Xfig 75 KLOC:    Pattern … Query … Architecture 
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u-elastic 
u_drag 
e_scale 
----------- 
127 funcs 

f_util 
f_read 
f_readold 
------------- 
72 funcs 

w_expert 
w_print 
w_file 
w_library 
------------- 
92 funcs 

e_edit 
e_update 
e_flip 
----------- 
121 funcs 
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Result Xfig: Netscape browser and Rigi graph visualizer 
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Graph Matching Process  

§  At each phase i of the matching process,  incremental input graph GI
i  is inexactly 

matched  against incremental pattern graph Gp
i  which results in incremental matched 

graph Gm
i  

§  We perform graph edit operations on:  
      expanded graph Gx

i  and its glue edges R m-x      
                            to match them with 
      selected region Gr

gi   and its glue edges Rm-r       
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