
1

1

On Modeling Software Architecture
Recovery as Graph Matching

 Deptartment of Computing and Software
McMaster University

 Canada
Sartipi@mcmaster.ca

http://www.cas.mcmaster.ca/~sartipi

Kamran Sartipi

September 25, 2003

2

Outline

Ø  Motivation and definition for software architecture and
software architecture recovery

Ø  Issues to be addressed in a software architectural
recovery environment

Ø  Proposed approach to support reflective and patrern-
based architectural recovery

Ø  Conclusion and future research directions

3

Motivation for
Software Architecture Recovery

Ø  Average life-time of large systems is 10-15 years.
Replacement of these systems is very expensive.

Ø  Adopting a new technology such as: object-orientation,
component-based programming, or network-centric
requires changes in the design of system.

Ø  Maintenance activities such as error-correction and
feature enhancement, invalidate the design documents.

Ø  Migrating a legacy system to a new platform such as
Windows or Unix requires functional description of
the system’s components.

4

Software Architecture

Ø  A generally accepted definition:

“The structure of the components of a program/system, their
interrelationships, and principles and guidelines governing

their design and evolution over time” [SEI 1994]

Ø  However, software architecture is more than “components and
connectors”, or “major elements of a system”. It is a collection of
views, patterns, stakeholders, and roles [SEI].

Ø  Therefore, Software architecture provides the necessary means
to formalize and interpret the properties of a software system.

5

Major architecture recovery techniques:
Ø  Clustering [MQ-partitioning, ACDC]
Ø  Concept lattice analysis [Repairing, Horizontal]
Ø  Pattern-based techniques [Dali, Recognizers]
Ø  System visualization and analysis [Pbs, Rigi]

Software Architecture Recovery

 Extracting high-level structural
information from low-level system
representation such as source-code

6

Issues to be addressed by an
architectural recovery environment

●  What view of the system to recover?

●  How to represent the software system?

●  How to model the high-level view of system?

●  What recovery technique to use?

●  How to scale the recovery process?

●  How to involve the user in recovery?

●  How to validate the architecture?

2

7

Graph Matching techniques

Ø  Exact and approximate graph matching techniques:
●  Comparing primitives of prototype and input graph.
●  Decomposing the graphs into simple trees to match.
●  Generating an state space using cost of graph edit

operations and search for minimum path.

Ø  Graph in reverse engineering:
●  Adopted as standard for information exchange among tools.
●  Uniform mechanism for representing the software system

and performing pattern matching process.

8

Graph regions
& Similarity matrix

Environment for Pattern-based Software Architecture Recovery

? Software System

C / Pascal / …
AQL query

Query
generation

Graph
generation

Graph matching engine
(search & evaluation)

Data
mining

Parsing

AST RSF

Software
as graph

Pattern graph

Module-
Interconnection

pattern

On-line:
analysis

Off-line:
pre-process

- System analysis
- Domain & Document
- Decision making

Architecture
&

Evaluation

9

Software system representation

Abstract
Domain model

Source-level
Domain model

Ø  Abstract domain model provides abstraction of the
source-level domain model

Ø  Entity-types: a subset of entity-types in source-code
Ø  Relation-type: an aggregation of one or more relation-

types in source-code

L: File-abs

use-R

l: File

call
f: Function

F: Function-abs

f ‘: Function

call f

10

Domain model for software system

File-abs Function-abs Type-abs Variable-abs

Id: ‘L’ Integer
imports: set (Entity-abs)
exports: set (Entity-abs)
contains: set (Entity-abs)
uses: set (Entity-abs)

Id: ‘V’ Integer Id: ‘T’ Integer Id: ‘F’ Integer
useFuncs: set(Function-abs)
useTypes: set (Type-abs)
useVars: set (Variable-abs)

use-R cont-R use-V imp-R exp-R use-T
from: File-abs
to: Entity-abs

from: File-abs
to: Entity-abs

from: File-abs
to: Entity-abs

from: File-abs
to: Entity-abs

from: Function-abs
to: Entity-abs

from: Function-abs
to: Entity-abs

use-F
from: Function-abs
to: Entity-abs

file #: Integer
line #: Integer
implement-id: Char Integer

Relation-abs

Entity-abs
name: String
file #: Integer
line #: Integer
implement-id: Char Integer

0..n
0..n
0..n
0..n

0..n
0..n 0..n

11

Source graph

 G
s

 = (N
s

, R
s

)

Source-region 1 Source-region 6

Main-seed

Data
 mining

Main-seed

Nodes = {1, 7, 10, 2, 13, 6, 11, 16, 15}
similarity = [4, 4, 4, 4, 3.5, 3 , 3, 3]

Dividing the system graph into regions
System representation: the collection of source-regions

12

MODULE: M1
 MAIN-SEED: func search_class

 IMPORTS:
 FUNCTIONS: func ?IF,
 func ?F5(3..6) M2
 TYPES: type ?IT,
 type ?T1(0..4) M3
 VARIABLES: var ?IV

 EXPORTS:
 FUNCTIONS: func ?EF,
 func ?F1(2..5) M3
 TYPES: type ?ET
 VARIABLES: var ?EV

 CONTAINS:
 FUNCTIONS: func $CF(15 .. 18),
 func search_class (),
 func inherit_facts (),

 TYPES: type $CT(0 .. 2)
 VARIABLES: var $CV(3 .. 5)

END-ENTITY

Architecture Query Language
(AQL)

Module Interconnection Pattern

?F1(2..5)

?T1(0..4)

?F4(3..4)

?F5(3..6)

?F2(1..3)

?T
2(

1..
3)

 ?F3(0..5)

M4 M3

M2

M1

exports imports

module

interconnection

Modeling high-level view of system

Query
graph

3

13

Domain model for AQL
(Conceptual Architecture)

AQL-query

Comp-placeholders

Subsystem Module

Conn-placeholders

Entity-abs

Relation-abs

Component

Conn-entity

use-F use-T use-V imp-R exp-R

File-abs Type-abs Variable-abs Function-abs

groupID: ‘$ CL / CF / CT / CV’
minCont: Integer
maxCont: Integer
entities: set(Entity-abs)
Imports: set(Conn-placeholders)
Exports: set(Conn-placeholders)

groupID: ‘? R / F / T / V’ Integer
type: Relation-abs
minEntities: Integer
maxEntities: Integer
entities: set(Conn-entity)
from: Component
to: Component

entity: Entity-abs
type: Relation-abs
from: Component
to: Component

name: String
mainSeeds: set(Entity-abs)
part: Comp-placeholders

name: String
mainSeeds: set(Entity-abs)
part: seq(Comp-placeholders)

name: String
contains: seq(Component)

1 1 1

0..n

1..n

0..n

1..n 1..n

1 1 1

3

1..n
1

Software
 system

14

Graph Matching Model of Recovery

15

Approximate graph matching

Ø  f: G1 à G2 maps the nodes and edges of G1 onto G2.
Ø  Different forms of function f:

●  Homomorphism: f can map two nodes of G1 to one node of G2.
●  Monomorphism: f is one-to-one (i.e., sub-graph isomorphism).
●  Isomorphism: f is one-to-one in both directions.

Ø  Exact graph matching:
●  Identifies exact set of nodes and edges of G1 that matches with

G2 (in most real applications is not feasible).
Ø  Approximate graph matching:

●  An optimal sequence of graph edit operations, such as:
insertion / deletion of nodes and edges of G1 so that

 G1 and G2 become isomorphic.

16

Ø  Source-graph: Gs
Ø  Query graph: Gq
Ø  Source-region: Gg(i)
Ø  Pattern-region: Gpr
Ø  Input graph: GI
Ø  Pattern graph: Gp
Ø  Matched graph: Gm

Different types of graphs

i

sr

i

i

i

17

 Given a query graph Gq = (Nq , Rq) that is expanded to a
pattern graph Gp,

 given a system graph Gs = (Ns , Rs), and

 given a graph distance threshold dt ,

 the problem is to find a sub-graph of Gs i.e. Gm that
approximately matches with the pattern graph Gp, so
that:

 dist(Gp , Gm) < dt & dist(Gp , Gm)|min

Modeling software architecture recovery as
“graph pattern matching”

18

Ø  At each phase i of the matching process, GI is
approximately matched against Gp which results in Gm

Ø  The graph edit operations are performed on
 pattern-region Gpr and its edge-bundles Rm1 pr
 to match them against
 selected source-region Gg(i) and its connector-edges

Rm1 sr

Graph algebraic model of
matching process

G
I
i G

m
i-1

m1 sr
(R i + ⊕ G) sr

g(i) =

Gm
i

Match
G

p
i G

m
i-1

m1 pr
(R i + ⊕ G) pr

i =

i

i

i

i

i

sr

i

4

19

Example: incremental graph-pattern matching (phase 2)

already
matched

M1

9

6

4

5 1

13

2

Matched graph

use-F: (1, 2)
F: (2, 4) F: (2, 3)

6 1 Query graph

1

13

10
7

11

2 9

6

4

5

Input graph

n 2,1

9

6

4

5

n 2,2

n 2,3

Pattern graph

G) G m
1

(R
2

+
2

m 1 mr
⊕

mr
G 2

m
=

Match

G) G 2
G m

1
(R

2 + = 2
m 1 pr

⊕
pr p

G I
2

G m sr m 1 sr
1 (R 2 + = G) ⊕ g(2)

M1

M2

M2

query

20

7 15

Internal-edge deletion cost

c = + 0.25 d s
 k

M – s
 k

Two cases: matching nodes 15 and 7

6

2

c = M – 0.75 s
 2

c = M – s
 2

6

2

c = M – 0.5 s
 2

c = M – 0.75 s
 2

2

6

Placeholder-node
to be matched

Expanded-graph

Ø  Objective: generating highly
cohesive modules

Ø  Internal-edge deletion cost must
relate to:
●  M: maximal similarity between two

nodes in the region
●  s: similarity between

corresponding nodes
●  k: number of already matched

nodes in the module
●  d: number of deleted edges

between two nodes

21

Imported & exported connector-edge
deletion costs

matched edge

matched edge

deleted: cost zero

deleted: cost zero

Current
edge-bundle

Matched node

 IMPORT
1- “r” = number of remaining edge-bundles
 including the current edge-bundle

2- Keep “r” edges from the current edge-bundle
 and delete the rest with cost “zero”

3- Match the edges from “r” edges in edge-bundle

4- From “r” edges, each edge that is not matched,
 is deleted with cost:

Example: r = 3, and 2 edges matched

deleted: cost
1/3 x 0.25 Ced

in

r

deleted edge

matched edge

deleted edge

matched edge

Current
edge-bundle

Example: 2 edges matched

Matched node Cost = zero

 EXPORT
IF one or more edges matched from edge-bundle
 THEN delete unmatched edges with cost “zero”
ELSE
 delete all edges with cost: 0.25 x Ced

in

22

Expanded edge

Matched edge

qrk: use-F (1, 2)

qrk: use-F (1, 2)

8 9

6 5

pr
i G

mr
u G

8 9

5 6

Pattern-region Matched-region

qnu

qnu
qni

qni

n i,1

n i,3

n i,2

Imported
edge-bundles

Exported
edge-bundles

Query-graphs with 2 nodes

Query-graph with 4 query-nodes Generated pattern-graph at phase 4

Generating pattern-graph from query-graph

23

Edge matching for imported edge-bundles

 No edge matched.
Edge-bundle

deleted with cost.
Min # edges may be

violated

Part of pattern-graph
 at phase i

One edge matched.
Others deleted with

some cost

Three edges matched.
Cost = max

Duplicate import is
not counted.

Cost = 0

No edge matched.
Redirect with cost

Edge bundles

matched node

Gpr i Gmr u

n i,2

9

5

8

n i,3

n i,1 n i,1 = 3 9

5

8

Exceeds max edges

9

5

8

n i,1 = 17

n i,2 = 14

Duplicate import

9

5

8

n i,1 = 3

n i,2 = 11

9

5

8

n i,1 = 3

n i,2 = 11

9

5

8

n i,1 = 3

n i,3 = 16

24

Edge matching for exported edge-bundle

Edge bundles

matched node

 No edges matched.
 Edges deleted.
Min # may be

violated.

Part of pattern-graph
 at phase i

One edge matched.
Cost = 0

Three edges matched
Cost = 0

Edge-bundle
redirected with cost.

No edge-bundle
deleted

Cost = max

Gpr i Gmr u
n i,1 9

n i,3

n i,2

5

8

n i,1 = 7 9

5

8

9

5

8

n i,1 = 7

n i,2 = 14

9

5

8
n i,2 = 11

n i,1 = 7

9
5

8

n i,1 = 7

n i,2 = 14

n i,3 = 16

n i,3 = 20

9

5

8

n i,1 = 7

n i,2 = 11

5

25

Steps for incremental pattern generation

u-elastic
u-drag e-edit

?R
4

(0
..1

0)

f-readtif e-scale

?R
2

(4
0.

.1
00

)

?R
1

(5
0.

.1
50

)

?R3 (
40

..1
00

)

S1-S4 S2

S3 S5

Architectural pattern using AQL query

Pattern
matching

S3

S1-S4 S2

S5

R
1

(1
30

)

R
2

(1
00

)

R
4

(1
0)

R3 (
66

)

Recovered architecture

37 files
598 funcs

23 files
668 funcs

20 files
327 funcs

10 files
54 funcs

1) Select main-seed for next module using tool provided techniques.

2) Recover next module with no link constraints

3) Based on the interaction with other components, and user’s objectives define the

constrained links for this module.
 * Maximum range is used to encourage high interaction
 * Minimum range is used to restrict the number of interaction

Xfig system

26

Techniques to Address Tractability

Ø  Incremental recovery by dividing the search space
into sub-spaces

Ø  Hierarchical recovery
●  Decomposing system into subsystem of files
●  Decomposing a subsystem into modules of F/T/V

Ø  Sub-optimal search techniques, e.g., bounded
path-queue A* (BQ-A*)

Ø  Implementation techniques

27

A* search with
Bounded path-queue

Sub-optimal solution to achieve
tractable search.

Ø  A* produces queue of sorted

incomplete paths.

Ø  Storing, sorting, duplicate path
checking are bottlenecks.

Ø  In successful search most of
paths at the end of queue are not
expanded.

Ø  Max / min thresholds: multiples
of the size of domains.

Root

1

2 3

4

5

6

7

8

1, 2, 3, … :
 Sequence of expansion

Path deleted
from queue

Path in queue

Solution

Time

Number of
paths in queue

Max

Min

Determined by
score ratio

28

Space Complexity Reduction

29

Implementation Related Techniques

Ø  HERE THE WAYS THAT THE COMPLEXITY
REDUCDES:

Ø  HOW PRESENT THE EDGE-BUNDLES
Ø  CACHING THE INFORMATION OF THE

SOURCE AND SINK NODES OF EDGES
Ø  EXPONENTIAL COMPLEXITY WHEN

SEARCH SPACE IS REDUCED TO
SOURCE-REGIONS

30

User assistance

Ø  Statistical Metrics
●  Overall association among files
●  Fan-in fan-out
●  Design views

Ø  Visualization
●  Simplifying the graph views
●  Browsing mechanism through HTML pages

Ø  Assistance with pattern generation
●  Identifying the locus of interactions

6

31

Representing the
architecture using
graph visualizer

(Rigi)

S1-S4 S2

rest-of-sys

S5
S3

File-level analysis

Function-level
 analysis

Ø  Different types of links between
boxes:
●  Association-links
●  Entity-usage links

Ø  Association-links with different
strengths to simplify the view

Ø  Viewing the locus of interaction
among entities to evaluate the
recovery process

Ø  Insight into the system before
starting the recovery

Ø  Manual recovery
32

Architecture of Apache 1.2.4
Partitioning

S1

S2

S3

S4

S5

Rest-of-sys

33

Ø  Hypertext links to actual entities
in the source file.

Ø  Information presented includes:

●  Evaluation metrics: modularity
quality, average similarity

●  Statistical information for link-
constraint violations

●  Interactions among components
●  Browsing the query
●  Switch between file-level and

function-level analysis

Representing the architecture
using Web browser (NetScape)

34

Validation of the recovery

Ø  Modularity quality
●  Connectivity based
●  Association based

Ø  User investigation of the graphs
●  Simplified graphs

Ø  Conformance with documented architecture
●  Precision and Recall

35

Accuracy of the recovered architecture

S1-S4

S2

S3

S5

rest-of-sys

37

23

20

10

8

editing &
utility &
drawing

X-windowing

editing &
utility

file manipulation

5 zero size files

47

28

37

16

81%

78%

65%

70%

 63% e-
 45% u-
100% d-

64% w-

31% e-
39% u-

44% f-

Recovered
subsystems

No. of
files

Xfig subsystems No. of
files Precision Recall

S1

S2

S3

S4

S5

11

10

4

4

10

- Defrule structures
- Inference engine

- Rule manipulation

- Object

- Expression eval

- System function
- User interface

13

6

3

4

82%

50%

75%

75%

 70%

83%

100%

75%

Recovered
subsystems

No. of
files

Clips subsystems No. of
files Precision Recall

7 49% 57%

rest-of-sys 5

Ø  Clips expert system
●  40 KLOC
●  44 files
●  736 functions
●  161 global vars
●  54 aggregate types

Ø  Xfig drawing editor
●  74 KLOC
●  98 files
●  1662 functions
●  1356 global vars
●  37 aggregate types

36

Conclusion

Ø  Presented an interactive environment for architectural
recovery and evaluation, and the supporting toolkit

Ø  Highlights of the approach:
●  Modeled the recovery process as “graph pattern matching”
●  Used data mining techniques to define similarity metric
●  Limited the complexity of recovery process by two techniques
●  Developed a query language based on ADL features
●  Represented the recovery result through HTML pages and

graphs to be visualized

7

37

Future directions

Ø  Behavior recovery:
●  Extracting frequently repeated traces of event

using techniques such as “sequential pattern
discovery”

Ø  Recovery of more architectural styles
●  Pipe & filter
●  Client & Server

Ø  Conformance with standard information
exchange GXL

38

Software Engineering Group
School of Computer Science

University of Waterloo

Ksartipi@matah.uwaterloo.ca
http://swen.uwaterloo.ca/~ksartipi

Kamran Sartipi

May 29, 2003

A Pattern-based Environment for Architectural
Recovery and Evaluation

39 40

Web services

Ø  Systems integration requires more than the ability to
conduct simple interactions by using standard
protocols

Ø  The full potential of Web Services as an integration
platform will be achieved only when applications and
business processes are able to integrate their
complex interactions by using a standard process
integration model.

Ø  Models for business interactions typically assume
sequences of peer-to-peer message exchanges.
Both synchronous and asynchronous, within stateful,
long running interactions involving two or more
parties

41

Motivation

Ø  Pattern matching problem
Ø  Clustering problem
Ø  Constraint satisfaction problem
Ø  Lattice partitioning problem
Ø  Composition and visualization problem

Motivation
Lack of a reflective and uniform model for pattern-based

architectural recovery, whereby the software system,
architectural pattern, and pattern matching process, are all

uniformly represented using a graph formalism.
42

System representation:
“Attributed Relational Graph (ARG)”

Ø  N = {n1, n2, …, nn}: attributed nodes (entities)
Ø  R = {r1, r2, …, rm}: directed attributed edges (relations)
Ø  A & E: alphabets for node & edge attributes/values
Ø  µ & ε: node & edge labeling functions

An “ARG” is a six-tuple G = (N, R, A, E, f, g):

Example of attributes in software system:
Ø  Label: path-name and identifier for nodes and edges
Ø  Type: type of node or edge
Ø  Location: two integers for file# and line#

µ(n2) = (type, Function-abs), (name, “/u/…/foo”), (id, F6)

ε(r8) = (from, n2), (to, n34), (type, use-F), (line#, 92), (file#, 5))

8

43

Abstract Domain Model

F’: Function-abs F: Function-abs

use-F

f: Function f ’: Function

call
call f ’

L: File-abs

cont-R

l: File

define
f: Function

F: Function-abs

f: Function

L: File-abs

use-R

l: File

call
f: Function

F: Function-abs

f ‘: Function

call f

Abstract
Domain model

Source-level
Domain model

Ø  Abstraction of the source-level
domain model

Ø  Entity-types: a subset of entity-types
in source-code

Ø  Relation-type: an aggregation of one
or more relation-types in source-code

Ø  Both function-level & file-level

44

Similarity between two entities
based on maximally associated groups

Ø  Maximally associated group:
●  A maximum group of entities (sources) sharing the same relations

on another maximum group of entities (sinks)
Ø  Source region:

●  Collection of entities that are associated with a region’s main-seed
Ø  Similarity between two entities:

●  Defined based on source and sink nodes in an associated group
Ø  Similarity between two components:

●  (files, modules, subsystems) defined based on overlap between
“graph region entities” and “component entities”

Source region

Main-seed

Sink

Source

Maximally associated group

45

Architectural design of
Alborz

Reverse Engineering
Toolkit

46

 Extracting high-level structural information from
low-level software representation (e.g., source code)

Software Architecture Recovery

Ø  Consists of two phases:
§  Extraction phase: an automatic tool generates source-model.
§  Analysis phase: a user-assisted tool constructs architecture.

Ø  Constitutes a major part of software maintenace.
Ø  Should relate with specific re-engineering objectives

47

Employed recovery techniques

Ø  Subsystem containment hierarchy to achieve
Ø  Concept lattice analysis
Ø  Data mining techniques
Ø  Pattern based techniques (graph matching) P
Ø  Clustering techniques

●  Hierarchical
●  Partitioning P
●  Incremental P

48

Software system

Considering different levels of abstraction

Ø  At file-level the software system
is decomposed into a number of
subsystems of files

 Subsystems of files

File

Function,
type, or
variable

Subsystem Modules of funcs, types, vars

Ø  At function-level a subsystem is
decomposed into a number of
modules of functions,
datatypes, and variables

9

49

Graph distance

Ø  Specific characteristics:
●  No node / edge relabeling
●  No node insertion since maximum size of nodes expanded
●  Node deletion is allowed up to minimum size

Ø  A certain cost is associated with each graph change:
●  Connector-edge deletion / insertion cost to comply with pattern
●  Internal-edge deletion cost to achieve cohesive modules

Min-cost of a number of changes that are performed on
 graph G1 to transform it into graph G2

