16-01-02

Application of Execution Pattern Mining and

Concept Lattice Analysis on Software Outline

Structure Evaluation = Dynamic analysis techniques in Reverse Engineering

Kamran Sartipi Proposed framework for dynamic analysis using
! Hossein Safyallah execution pattern mining:

. Feature-specific task scenarios
{sartipi, safyalh}@mcmaster.ca Program trace generation

Program loop elimination

Execution pattern generation

Identifying core functions using two techniques:
= Second Pattern Generation

Dept. Computing and Software
McMaster University

CANADA = Concept Lattice Analysis
.) = Software structure evaluation
McMaster SEKE'06 = Case study Xfig
University BE& July 5, 2006 ;
) * 4 = Conclusion
insiringIanovaion and Discovery
Application of Dynamic Analysis in Proposed Framework:
Reverse En gi neerin g Dynamic Analysis using Execution Pattern Mining
» Existing Dynamic Analysis approaches H T Seamio B Enn-ex Eoseuon
. . - N b ure. ‘Scenarlo set on Instrumented | Listing Pre-Processing | Traces. Bxoiiiinn,Ratiern.
= Execution trace analysis: aspect mining, clustering, performance g Saloction Systom Mining
analysis, program slicing. 5
’ .) . Pattem Reposito
= User-system interaction analysis:recovery of behavior patterns. E e o
3 Exccution
£ W cdiotcbo o B Patterrs
We use Dynamic Analysis to: .
= Identify software functionality (feature) in source code Sosa: st g & roir-r i~
= Traditionally, static analysis was used to locate function templates in source «
code. g —
= We generate patterns of execution traces to identify the implementation of -:u
software features in source code by the means of task scenarios. < |Festum-speckic D A Excauton
E e ————— Concept Lattice Assigning Measuring
= Incorporate semantics into static analysis & Ay F’ i e
= Using feature-to-code assignment to find core functionality of the clustering & Systen Bodues
techniques. Teture o, olpse,)
= Providing metrics to evaluate structural properties of software systems. ! !

Feature-Specific
Scenario Set

Software
Instrumentation

A feature is the unit of the system functionality (e.g., flipping a figure)
A task scenario defines the user-system interaction in the form of a
sequence of software system features (operations) in an informal or
semi-formal manner. Bt

Insertin% particular pieces of code (probe) into the software’ s source
COdte or binary image to extract dynamic information from the running
system.

Yourpplication

Xfig draw ple feature-specific scenario set to target Xfig
feature of “Flipping” the drawn object:

Feature-Specific Scenario Set:

- Start, Draw Ellipse, Flip, Exit

- Start, Draw Spline, Flip, Exit

- Start, Draw Arc, Flip, Exit

- Start, Draw Rectangle, Flip, Exit

- gtart, Draw Polygon, Flip, Exit generate text messages at both

mely Entry/Exit listings.

Finalization

16-01-02

Preprocessing (cont’d)

Extracted entry-exit listings have lots of redundancies and repetitions
caused by program loops that must be eliminated.

To eliminate program loops:

= Represent the Entry-Exit listing as a dynamic call tree:
= Nodes represent functions.
= Edges represent function calls.
= Assign identical IDs to the nodes with identical sub-trees (nested calls).

= Prune the dynamic call tree by removing multiple instances of nodes with
identical sub-trees from top to bottom.

= Generate the execution trace by a depth first traversal on the pruned tree.

Preprocessing:

Tree Pruning (con’a)

Pruning is a 4 steps process to eliminate loop-based redundancies in a
dynamic call tree.

1 Build a string representation of the sub-tree IDs rooted at each
particular node

> Extract repetitions from the original string (with repetitions) using
a string repetition finder algorithm, e.g., crochemore.

5. Represent the original string in the form of instances of repetitions
and their corresponding number of repetitions.

4. Keep sub-trees that correspond to a single instance of each
repetition.

Preprocessing

Example

Generate Dynamic

Procedure Foo

Call-Tree with
Begin Unique IDs
Call F1 1 F1'3F115 an
While (condition) d0 eempp nter
Ca(ll F1) 12 Y14 V16 ‘5;}&35515 l14 16
call F2 FIO F10 F20 F1€:#20 F10 F20
End I1 Exit F1
End Fit Enter 1 cm Find Loops in
10 Ent Unique IDs
Foo F12 ExingF10
B 1 17 x5, 17,15,17,15, 17
g - A i
b g a

Eliminate Loops

FiO F10 F20 In Call-Tree
Exit F2
F]11 \4Generate Loop-Free Execution Trace
F12 vy FOO, F1, F10, F11, ngfif;gw, F2, F20, ...

Sequential Pattern

i Mining

. roup of “transaction seauences", where each transaction sequence
belongs to a customer, and the transactions are ordered according to
the transaction-time.

Applying a sequential pattern mining on this set of transaction-

sequences reveals the common maximum sequences of it

Interesting relationships among the items can be found.
For example in a computer bookstore, we may find that 10% of the
customers first buy a C book then a C++ book and then a Java book.

Sequential Pattern
Mining ...

Customer Id Customer-Sequence

<(30) (90)>
<(10 20)/(30) (40 60 70)>
<(30, 50, 70)>
<(30) (40 70) (90)>
<(90)>

gl alw|N| =

Customer-Sequence Version of the Database

Sequential Patterns

<(30) (90)>
<(30) (40 70)>

The Pattern Set (minimum support is 2)

Sequential Pattern

| Mlnlng ... (example)

, F3,

F1,F4,F23, F28, F9, , F4, F10, F15 1, F4, F33, F38, F9, F15

Feature 1 Feature 2 Feature 3
, F3,F8, F4,F15 F1,F4, F23, F28, F20 F1,F4,F33, F38, F4, F15
, F3, F8, F16, F15 F1,F2,F23, F28, F15 F1,F2,F33,F38,F16, F15
, F3, F8, F4, F10, F18, F20 F1,F5, F23, F28, F4, F10, F18, F20| F1, F5, F33, F38, F15
, F3,F8, F20, F13, F15 F1,F7,F23, F28, F20, F13, F15 F1,F7,F33, F38, F20, F13, F15
F
F

F8,
, F8,

F1, F23, F28, F4, F10, F17, F18, F2¢ . F9, F33, F38, F10, F15

feature 1 2 3

Execution F1 F1 F1

patterns F15 Fi5 Fi5 <=—= Common pattern
F4, F10 F4, F10 <= Noise pattern
F18, F20 F18, F20
F3, F8 F23, F28 F33, F38 «—1 Feature-specific

Proposed Framework jor
Dynamic Analysis using Execution Pattern Mining

& Raw setof
8 Feature-Specilic [Scenarlo Execution | ENtry-Exit Exsaution;
B Feawre | Scemarioset on Instrumented [L1SUN | pre_processing|Traces __ | Execution Pattern
i Selection ‘System Mining
g
g Pattem Repostiory
£
S Excution
£ New Scenario Set Selection Patterns
gL
<
Scenarlo-Set alio: ndtio n
Soca set1 setz 13
@ Second Pattern
[
|- p—
Pattern Patiems
E
| J i Assigning
g Concept Latilce Feature Functionally
£ Analysis - 0
aQ 5 & System Modukes

Atanily o relevant
teatures (circle, elipse,)

16-01-02

Identifying Features in Source Code ... (Second
Pattern Generation)

Two categories of execution patterns:

. Feature»s#aecific patterns: core functions that implement the specific
feature of a scenario-set.

= Common patterns: sequences of functions that appear in almost every
executed scenario (e.g., system initialization and termination, mouse
movement, drawing canvas).

Second sequential pattern mining is performed to
separate two categories of patterns:

Step 1: first sequential pattern mining with high min-support
extracts both feature-specific and common patterns

Step 2: second sequential pattern mining on the collection of all
results of “Step 1“ separates two patterns categories.

= Patterns with small supports (e.g., less than %10) are feature-specific.

= Patterns with large supports (e.g., more than %80) are common.

Concept Lattice Analysis

s the structul the relations am

Lattice repres in a database.

= Concept Lattice is generated from Context Table

= Each lattice node is a concept that may have objects and attributes.

= Every object has all the attributes that appear in that node or all nodes above it.

= Each attribute belongs to all objects that are in that node or every node bellow that
node in the lattice.

f1
f1 72 |3 |45 | Cl=<{sl, s s3} {fiy>
o | 2= <{st, 52}, {1, 72} f2
@3 = <{s1}, {1, 2, f5} 3
2| xlx| |x Ca = <{s2} {F1. 2, f4} 5
s3] x X C5 = <{s3}, {f1, f3} s3 sl
context table

concept= <{objects}, {attributes}>
concept lattice

Case Study: Xfig Drawing Tool

Elli
g

Experiments with
Xfig Drawing Tool ...

The results of execution pattern mining for a collection of 3
different Xfig features.

Feature Specific Number of Average Average Number of Average
Family | FeatureofXfig | Different Scenarios | Trace Size | Pruned TraceSize | Extracted Patterns | Pattern Size
Circle-Diameter 0 723 2600 % 33
Dmw | Cirle-Radius 10 123 2363 a3 3
Ellipe | Ellipse Diameter 0 6405 2536 T 37
Ellipse-Radis 0 7351 2599 3 35
Miove Objects 7 11887 3166 31 5
Copy ["Copy Objects 7 11460 3269 37 50
Closed Interpolated 0 18635) 58 &
Daw | Tnterpolated 0 15069 403 & Ll
Spiine [Approximated 10 15057 536: o1 a7

» Characteristics of the proposed technique:

= Prep-processing (loop elimination) drastically reduces the sizes of the
execution traces.

Post-processing (second pattern or concept lattice) reduces the
overwhelming number of execution patterns that are generated.

Experiments with
Xfig Drawing Tool ...

Extracted core functions for Xfig features.

Feature Extracted Core Functions
Tesizing_cbr, clastic_cbr, pw-curve, create_circlebyrad
Draw center_marker, create_ellipse, add_ellipse, list_add_ellipse
Circle set_lastspline, redisplay_ellipse, ellipse_bound, draw_ellipse
overlapping, debug_depth, circlebyradius_drawing_sclected
Draw resizing_box, elastic_box, boxsize_msg, create_boxobject
Rectangle | create_point, create_line, add_line, box_drawing_sclected
Draw create_spline, make_sfactor, create_sfactor, add_spline
Spline last_spline, set_latestspline, redisplay_spline, spline_bound

approx-spline_bound, draw_spline, compute_closed_spline
Crasc_objecthighlight, inil-center_scale, init_scale_lin
Seale scaling-line, adjust_boxpos, elastic_scalepts, fix_scale.line
rescale.points, scale.arrows, scale.arrow, scale.linewidth

Tnit_arb_move, nil-move, mil_lne_dragging

set_action-on, elastice_moveline, clastic_links, moving.line
Move place_line, crase_lengths, place_line.x, adjust-pos
set_lastposition, set-newposition, move_selected

Experiments with
Xfig Drawing Tool ...

Less visible common Xfig features and their functions

Xfig Extracted Core Functions
Functionality
Side-Ruler setrulermark, set_siderulermark
Management set_toprulermark, null_proc
Canvase canvas_exposed, clear_canvas
Updating canvase.selected
Mouse draw_mousefun_canvas, draw_mousefun
Pointer clear_mousefun, draw.mousefn2
Handling draw_mousefun_msg, mouse_title
Draw Line set_line_stuff, x_color, shzoomy, shzoomx

16-01-02

Case Study: Xfig
The Execution Trace for scenario “Drawing and Flipping Rectangle " is
Annotated with Descriptions of Execution Patterns.

Generl exceuionptfern or

Canyae dine ol -
i Sl
e Table .o

v pine fungiomlfy [nscked
2). Funciions that
ettt o s st e

e opEe v
l|u~ rw%\m.uu Y

Excution pattern for updating the
mouse poinicr position and handling
I Tunchianalit (sce Table 3. ow 33

Epecuton pater et s b
o e e
e — it o o canvas.
the actual box object and draws

e Eunhey SR bt i
g s s Tobk 1, [

‘Excontion pattern that fmalizes
terabeatiaving nd it o
Xifig object se

Gtpl ccuton e fo o atng
% - X that prompis for saving the draving

Exceution pattern that reveals
the functionality needed for |4
Mliping a rectangle.

roleading all esourecs.

Experiments with
Xfig Drawing Tool ...

Structural cohesion and Functional scattering measures for Xfi g & Pine.

Feature Family | Contributed | [Frn| | [Fm (1 Fa, | Cohesion
By File (m) SCay(m) FS(®y)

d_ellipse.c 16 12 75%

Ellipse u_elastic.c 67 8 2% 57%
e copy.c 5 3 0%

Copy e_move.c 4 3 75% 32%
d_line.c 9 2 2%

Spline dspline.c 6 5 B%
u_bound.c 19 2 1%
u_dmw.c 75 14 19% 66%

i Conclusion

We proposed:

= A pattern based approach to dynamic analysis of software systems that
employs data mining techniques to extract functional information out of
noisy execution traces.

A measure of functionality scattering of a feature among structural modules
as well as a measure of cohesion for each structural module.

A method of visualizing the functional distribution of specific features on a
lattice using concept lattice analysis.

The technique deals with scalability, through:
= Reducing the size of execution traces by eliminating the loop-based repetitions.
« Reducing large sizes of the loop-free traces using data mining techniques.

A method for assigning semantics to the static analysis of a software

References

= “Dynamic Analysis of Software Systems using Execution Pattern Mining”, H.
Safyallah and K. Sartipi, Proceedings of the IEEE International Conference on
Program Comprehension (ICPC 2006), pages 84-88. Athens, Greece.

= “Alborz: An Interactive Toolkit to Extract Static and Dynamic Views of a
Software System”, K. Sartipi and L. Ye and H. Safyallah, Proceedings of the
IEEE International Conference on Program Comprehension (ICPC 2006), pages
256-259. Athens, Greece.

= “Application of Execution Pattern Mining and Concept Lattice Analysis on
Software Structure Evaluation”, K. Sartipi and H. Safyallah, International
Conference on Software Engineering and Knowledge engineering (SEKE 2006).
San Francisco Bay

= “An Orchestrated Multi-view Software Architecture Reconstruction
Environment”, K. Sartipi and N. Dezhkam and H. Safyallah. IEEE International
Working Conference on Reverse Engineering (WCRE 2006), Benevinto, Italy.

Application of Execution Pattern Mining and
Concept Lattice Analysis on Software
Structure Evaluation
Kaman Sartipi
Hossein Safyallah

{sartipi, safyalh}@mcmaster.ca

Dept. Computing and Software
McMaster University

CANADA
[\I(\L{Stéfml, SEKE’ 06
niversity July 5, 2006
¥

16-01-02

Pattern Analysis:

Concept Lattice Analysis (cont’d

= An obiect is a targeted feature dofa feature-specific scenario
setSp .

= An attribute is a function that participates in the execution
patterns within S .

A feature-specific concept C¢ is concept with a single object
(feature) ¢ . We define Fé,o be the set of functions that appear
oncg -

A logical module Fa, is the set of functions that implement
feature family & .
Fy, = U F, s’o

pED,

Structural Evaluation

*

Let Mg, = {mi1,mo, ..., m;}be the set of modules
where all the functions in Fs,are defined in elements
of Mg,

Let F,,, to the set of functions that are defined in
modules ™.

Structural cohesion of module mwith respect to feature D4
family SCa, (m) Jis deﬁsc) — |F O Fa, |
*e T TR,

Functional scattering of feature family & , namely #'S(®),is

defined as:
T, SCa,(m)

FS(®4) =1—
¢ [Ma,|

Formal Definitions:
Scenario, Feature

A software feature¢ (of type text) is a unit of software requirements
that describes a single system functionality.

A scenario is modeled as a sequence of features, as: $ = [¢1, ¢, .. ., Pn]

A feature-specific scenario set Syis a set of scenarios that all share a
specific feature: S ={slseS A 3Idese d =g
where S is the set of all system scenarios.

A feature family ®4is a set of semantically relevant features to specific
feature ¢ .

Formal Definitions:
Execution Pattern Mining

Let JF be the set of all function names in the subject software system.
Execution trace ‘T is a sequence of function names from F.

Let Repository RSo be the set of all extracted traces according to the
execution of task scenarios in feature-specific scenario set Sp-

An execution pattern P € T is defined as a contiguous sequence of
functions from fe F that is supported by at least MinSupport number of
the execution traces in the repository Rsé'

AP execution trace t supports execution patternp iff P is a subsequence
of .

Each execution pattern extracts the sequence of functions that
implement a common functionality within each feature-specific
scenario set S,

Concept Lattice Analysis

R (@] A

Provides lattice representation for the binary relation
R between objects 0O and their attribute-values A .

Provides a means for clustering objects based on
their common attributes.

Provides a separation method for attributes based on
their sharing level.

16-01-02

Concept Lattice Analysis
(cont’d)

= In the binary relation R between Objects (®and
attributes A:

= The triple C = (O, A, R) is called a formal context.

= For any set of objects O C ©, we define shared 4(O)
as the set of shared attributes among objects in O .

« For any set of attributes A C A, we define sharedo (A)
as the set of objects whose sharing all attributes in A .

» Concept Cis defined as the a pair c =< O, A > such that:
O = sharedo(A) AN A= shareds(O)

