
16-01-02

1

Kamran Sartipi
Hossein Safyallah

{sartipi, safyalh}@mcmaster.ca

Dept. Computing and Software
McMaster University

CANADA

SEKE’06
 July 5, 2006

Application of Execution Pattern Mining and
Concept Lattice Analysis on Software

Structure Evaluation

Outline
n  Dynamic analysis techniques in Reverse Engineering

n  Proposed framework for dynamic analysis using
execution pattern mining:
n  Feature-specific task scenarios
n  Program trace generation
n  Program loop elimination
n  Execution pattern generation
n  Identifying core functions using two techniques:

n  Second Pattern Generation
n  Concept Lattice Analysis

n  Software structure evaluation
n  Case study Xfig
n  Conclusion

Application of Dynamic Analysis in �
Reverse Engineering

n  Existing Dynamic Analysis approaches
n  Execution trace analysis: aspect mining, clustering, performance

analysis, program slicing.
n  User-system interaction analysis:recovery of behavior patterns.

We use Dynamic Analysis to:
n  Identify software functionality (feature) in source code

n  Traditionally, static analysis was used to locate function templates in source
code.

n  We generate patterns of execution traces to identify the implementation of
software features in source code by the means of task scenarios.

n  Incorporate semantics into static analysis
n  Using feature-to-code assignment to find core functionality of the clustering

techniques.
n  Providing metrics to evaluate structural properties of software systems.

Proposed Framework:�
Dynamic Analysis using Execution Pattern Mining

Pa
tt

er
n

G
en

er
at

io
n

Pa
tt

er
n

 A
na

ly
si

s

Feature-Specific�
Scenario Set

Xfig drawing tool: sample feature-specific scenario set to target Xfig
feature of “Flipping” the drawn objects.

-  Start, Draw Ellipse, Flip, Exit
-  Start, Draw Spline, Flip, Exit
-  Start, Draw Arc, Flip, Exit
-  Start, Draw Rectangle, Flip, Exit
-  …
-  Start, Draw Polygon, Flip, Exit

Feature-Specific Scenario Set:

A feature is the unit of the system functionality (e.g., flipping a figure)
A task scenario defines the user-system interaction in the form of a
sequence of software system features (operations) in an informal or
semi-formal manner.

Software �
Instrumentation

 Inserting particular pieces of code (probe) into the software’s source
code or binary image to extract dynamic information from the running
system.

 We instrument the software system to generate text messages at both
entrance and exit of each function, namely Entry/Exit listings.

16-01-02

2

Preprocessing (cont’d)

To eliminate program loops:

n  Represent the Entry-Exit listing as a dynamic call tree:
n  Nodes represent functions.
n  Edges represent function calls.
n  Assign identical IDs to the nodes with identical sub-trees (nested calls).

n  Prune the dynamic call tree by removing multiple instances of nodes with

identical sub-trees from top to bottom.

n  Generate the execution trace by a depth first traversal on the pruned tree.

Extracted entry-exit listings have lots of redundancies and repetitions
caused by program loops that must be eliminated.

Preprocessing: �
Tree Pruning (cont’d)

n  Pruning is a 4 steps process to eliminate loop-based redundancies in a
dynamic call tree.

1.  Build a string representation of the sub-tree IDs rooted at each
particular node

2.  Extract repetitions from the original string (with repetitions) using
a string repetition finder algorithm, e.g., crochemore.

3.  Represent the original string in the form of instances of repetitions
and their corresponding number of repetitions.

4.  Keep sub-trees that correspond to a single instance of each
repetition.

Procedure Foo
Begin

Call F1
While (condition) do

Call F1
Call F2

End
End

Preprocessing
Example

1 F1

F10

F11

F12

F1

F10

F2

F20

F1

F10

Foo

F2

F20

F1

F10

F2

F20

I3

I2

I1

I0

I5

I4

I7

I6

I5

I4

I10

I7

I6

I5

I4

I7

I6

Generate Dynamic
Call-Tree with

Unique IDs

I3, I5, I7, I5, I7, I5, I7

I3, (I5, I7)^3

2 Find Loops in
Unique IDs

…, Foo, F1, F10, F11, F12, F1, F10, F2, F20, …

4
Generate Loop-Free Execution Trace

Eliminate Loops
In Call-Tree

3 F1

F10

F11

F12

F1

F10

F2

F20

Foo

I3 I5 I7

Enter Foo
Enter F1

 Enter F10
 Exit F10
 Enter F11
 Exit F11
 Enter F12
 Exit F12

Exit F1
Enter F1

 Enter F10
 Exit F10

Exit F1
Enter F2

 Enter F20
 Exit F20

Exit F2
.
.
.

Exit Foo

Sequential Pattern �
Mining

n  Given:
n  A group of items (e.g. coke, pen).

n  A group of “transaction sequences”, where each transaction sequence

belongs to a customer, and the transactions are ordered according to
the transaction-time.

 Applying a sequential pattern mining on this set of transaction-

sequences reveals the common maximum sequences of items.

Interesting relationships among the items can be found.
For example in a computer bookstore, we may find that 10% of the
customers first buy a C book then a C++ book and then a Java book.

Customer Id Customer-Sequence

1 <(30) (90)>

2 <(10 20) (30) (40 60 70)>

3 <(30, 50, 70)>

4 <(30) (40 70) (90)>

5 <(90)>

Customer-Sequence Version of the Database

Sequential Patterns

<(30) (90)>
<(30) (40 70)>

The Pattern Set (minimum support is 2)

Sequential Pattern �
Mining …

Sequential Pattern �
Mining … (example)

Feature 1 Feature 2 Feature 3

feature 1 2 3

Execution
Patterns

F1
F15

F4, F10
F18, F20

F3, F8

F1
F15

F4, F10
F18, F20

F23, F28

F1
F15

F33, F38

Common pattern

Feature-specific

Noise pattern

F1, F4, F3, F8, F4, F15
F1, F2, F3, F8, F16, F15
F1, F5, F3, F8, F4, F10, F18, F20
F1, F7, F3, F8, F20, F13, F15
F1, F4, F3, F8, F9, F15
F1, F3, F8, F4, F10, F17, F18, F20
F1, F3, F8, F4, F10, F18, F20

F1, F4, F23, F28, F20
F1, F2, F23, F28, F15
F1, F5, F23, F28, F4, F10, F18, F20
F1, F7, F23, F28, F20, F13, F15
F1, F4, F23, F28, F9, , F4, F10, F15
F1, F23, F28, F4, F10, F17, F18, F20

F1, F4, F33, F38, F4, F15
F1, F2, F33, F38, F16, F15
F1, F5, F33, F38, F15
F1, F7, F33, F38, F20, F13, F15
F1, F4, F33, F38, F9, F15
F1, F9, F33, F38, F10, F15

16-01-02

3

Proposed Framework for �
Dynamic Analysis using Execution Pattern Mining

Pa
tt

er
n

G
en

er
at

io
n

Pa
tt

er
n

 A
na

ly
si

s

 Two categories of execution patterns:
n  Feature-specific patterns: core functions that implement the specific

feature of a scenario-set.

n  Common patterns: sequences of functions that appear in almost every
executed scenario (e.g., system initialization and termination, mouse
movement, drawing canvas).

 Second sequential pattern mining is performed to
separate two categories of patterns:

n  Step 1: first sequential pattern mining with high min-support
extracts both feature-specific and common patterns

n  Step 2: second sequential pattern mining on the collection of all
results of “Step 1“ separates two patterns categories.

n  Patterns with small supports (e.g., less than %10) are feature-specific.
n  Patterns with large supports (e.g., more than %80) are common.

Identifying Features in Source Code … (Second
Pattern Generation)

Concept Lattice Analysis

n  Concept Lattice is generated from Context Table
n  Each lattice node is a concept that may have objects and attributes.
n  Every object has all the attributes that appear in that node or all nodes above it.
n  Each attribute belongs to all objects that are in that node or every node bellow that

node in the lattice.

f1 f2 f3 f4 f5

s1 X X X

s2 X X X

s3 X X

context table

C1 = <{s1, s2, s3}, {f1}>
C2 = <{s1, s2}, {f1, f2}
C3 = <{s1}, {f1, f2, f5}
C4 = <{s2}, {f1, f2, f4}
C5 = <{s3}, {f1, f3}

concept= <{objects}, {attributes}>

f1

f2

f5

s1

f4

s2

f3

s3

concept lattice

Lattice represents the structure of the relations among entities in a database.

Case Study: Xfig Drawing Tool

The results of execution pattern mining for a collection of 3

different Xfig features.

Experiments with�
Xfig Drawing Tool …

n  Characteristics of the proposed technique:
n  Prep-processing (loop elimination) drastically reduces the sizes of the

execution traces.

n  Post-processing (second pattern or concept lattice) reduces the
overwhelming number of execution patterns that are generated.

Extracted core functions for Xfig features.

Experiments with�
Xfig Drawing Tool …

16-01-02

4

Less visible common Xfig features and their functions

Experiments with�
Xfig Drawing Tool …

Case Study: Xfig�
The Execution Trace for scenario“Drawing and Flipping Rectangle” is

Annotated with Descriptions of Execution Patterns.

Structural cohesion and Functional scattering measures for Xfig & Pine.

Experiments with�
Xfig Drawing Tool … Conclusion

We proposed:
n  A pattern based approach to dynamic analysis of software systems that

employs data mining techniques to extract functional information out of
noisy execution traces.

n  A measure of functionality scattering of a feature among structural modules
as well as a measure of cohesion for each structural module.

n  A method of visualizing the functional distribution of specific features on a
lattice using concept lattice analysis.

n  The technique deals with scalability, through:
n  Reducing the size of execution traces by eliminating the loop-based repetitions.
n  Reducing large sizes of the loop-free traces using data mining techniques.

n  A method for assigning semantics to the static analysis of a software

References
n  “Dynamic Analysis of Software Systems using Execution Pattern Mining”, H.

Safyallah and K. Sartipi, Proceedings of the IEEE International Conference on
Program Comprehension (ICPC 2006), pages 84-88. Athens, Greece.

n  “Alborz: An Interactive Toolkit to Extract Static and Dynamic Views of a
Software System”, K. Sartipi and L. Ye and H. Safyallah, Proceedings of the
IEEE International Conference on Program Comprehension (ICPC 2006), pages
256-259. Athens, Greece.

n  “Application of Execution Pattern Mining and Concept Lattice Analysis on
Software Structure Evaluation”, K. Sartipi and H. Safyallah, International
Conference on Software Engineering and Knowledge engineering (SEKE 2006).
San Francisco Bay

n  “An Orchestrated Multi-view Software Architecture Reconstruction
Environment”, K. Sartipi and N. Dezhkam and H. Safyallah. IEEE International
Working Conference on Reverse Engineering (WCRE 2006), Benevinto, Italy.

Kaman Sartipi
Hossein Safyallah

{sartipi, safyalh}@mcmaster.ca

Dept. Computing and Software
McMaster University

CANADA

SEKE’06
 July 5, 2006

Application of Execution Pattern Mining and
Concept Lattice Analysis on Software

Structure Evaluation

16-01-02

5

Pattern Analysis:�
Concept Lattice Analysis (cont’d)

n  An object is a targeted feature of a feature-specific scenario
set .

n  An attribute is a function that participates in the execution
patterns within .

n  A feature-specific concept is concept with a single object
(feature) . We define to be the set of functions that appear
on .

n  A logical module is the set of functions that implement
feature family .

Structural Evaluation
n  Let be the set of modules

where all the functions in are defined in elements
of .

n  Let to the set of functions that are defined in
modules .

Structural cohesion of module with respect to feature
family , namely ,is defined as:

Functional scattering of feature family , namely ,is
defined as:

Formal Definitions:�
Scenario, Feature

n  A software feature (of type text) is a unit of software requirements
that describes a single system functionality.

n  A scenario is modeled as a sequence of features, as:

n  A feature-specific scenario set is a set of scenarios that all share a
specific feature:

 where S is the set of all system scenarios.

n  A feature family is a set of semantically relevant features to specific
feature .

Formal Definitions: �
Execution Pattern Mining

n  Let be the set of all function names in the subject software system.

n  Execution trace is a sequence of function names from .

n  Let Repository R be the set of all extracted traces according to the
execution of task scenarios in feature-specific scenario set

n  An execution pattern p is defined as a contiguous sequence of
functions from F that is supported by at least MinSupport number of
the execution traces in the repository .

n  An execution trace supports execution pattern iff is a subsequence
of .

Each execution pattern extracts the sequence of functions that
implement a common functionality within each feature-specific
scenario set .

Concept Lattice Analysis

n  Provides lattice representation for the binary relation
R between objects O and their attribute-values A .

n  Provides a means for clustering objects based on
their common attributes.

n  Provides a separation method for attributes based on
their sharing level.

16-01-02

6

Concept Lattice Analysis
(cont’d)

n  In the binary relation R between Objects O and
attributes A:
n  The triple C=(O, A, R) is called a formal context.

n  For any set of objects o , we define
as the set of shared attributes among objects in .

n  For any set of attributes a , we define
as the set of objects whose sharing all attributes in .

n  Concept C is defined as the a pair such that:

