16-01-02

Knowledge Transformation from Task Scenarios
to View-based Design Diagrams

Nima Dezhkam
Kamran Sartipi

* {dezhkan, sartipi}@mcmaster.ca

Department of Computing and Software
McMaster University
CANADA

McMaster SEKE' 08
University B35

* July 1, 2008

Outline

i.

Task Scenarios
Scenarios in knowledge extraction
Proposed framework

= Scenario generation
= Scenario decomposition
= Design construction

Fast-food restaurant case-study
Conclusions

Task scenarios

We define a *’ scenario” as a structured narrative text describing a

system’ s requirements in terms of system-environment interactions at
business rule level.

= Different scenario representations:
= Simple text
= Graphical representation
= Relational algebra, etc.

= Common applications of scenarios:
= Requirement elicitation and analysis,
= Design representation,
= Testing
= Maintenance

Scenarios in Knowledge Extraction

Enhancement of scenario generation by using scenario
schemas

Formal representation of scenarios using tabular expression
is introduced in order to simplify the tasks of scenario
verification, validation and integration

Schema definition for semantic model of scenarios to help
requirement refinements

Modular representation of the scenarios to support the
reusability of the scenarios in different design contexts

Proposed Framework for Scenario to
Design Diagram Transformation

Transforms a set of text-based scenarios into two types of

design diagrams, as: Data and Function.

Properties:

= Uses a scenario syntax that allows us to define well-structured
scenarios.

= Uses a scenario schema to parse the scenarios and populate
an object base of actors, actions, and dependencies.

= Uses Guidelines for transforming the elements in the object
base into design diagrams.

Proposed Framework ...

Generate
Stage 1 Requirements: scenario caﬁg:;z_fle q\?:l‘ir[:;d
(Scenario generation) - Business rules | scenarios scenarios
~ Application domain Conform

scenario syntax | Map onto
sceneario
schema

Stage 2
. " Objectbase:
(Scenario decomposition) Validate Actor, Information, Action
against
Requiremepts Incremental
design

Stage 3 Data Function
view view
(Design construction)

‘Add structured scenarios

Knowledge base: ¥

- Scenario templates

with

16-01-02

Fast Eood Restaurant Systen

Scenario Syntax

Scenario : {Actor + {Constraints}>-M}-N 4
{Adtion + {Constraints }>-M}-N +

{Working Infoxmation + { Constraints}*-M}!-N

Stage 1: Scenario Generation

= Example scenario: “Order taker adds a menu item to an incomplete order.”

* Sample Scenario Template Form Proposed Scenario Schema

= A scenario template forms the knowledge- base of
a fast-food restaurant system

Tnternal
action

Output

action

Dependency
*D: Action
_ﬂe ndency -dtpcdcm‘y
[[|
Is-associated-with| [Is—part—of oLy

Stage 1: Scenario Generation

Is-parallel-with

Example of Scenario Decomposition: : ;
ple of 'p Objectbase Created from 10 Scenarios
One of the 12 Scenarios
Indes | Actor|syatem | Actor|suman | Working information | Action|input | Action|internat | Action|output
o 21 7 . f ot g reen [— p—
+ Sample Fast-food scenario: Scenario #1: "Order takmg':vtalmn computes and re Pe———— - p— - . p—
ports the price of the orders. " p— p— p—
goal = taking order & handling payment i _‘-:::‘_ — -~ — e
actor] syatem = order taking station " p— ...“ . pra—
in formation = order, price f p— - e
. action | ppernal = compute price s b [—— .
= Decomposed scenario: m‘ﬁm”o“m” = report price » B [— [— [
data dependencyls, aemsated with ™ e | Is-associated-with | _Belong-to Is-part-of Follow recede
(1,0 station, n, order) . R Ry P —— 5
data dependency|peiomg 1o = s - [Ere—— [o—————————
(price, order) & |t v
action dependency| proceds = s [———
(compute price, report price) - - e pr———
T - P —
o pr——

Stage 3: Design Construction

Design Construction Guidelines:
Data View i

* Step 1: Extract all instances of Actor, Working information, and Data dependency classes from the
object base and apply the following rufes on them

1. Instances of Actor and Working i are candidate

2. Instances of Is depen imply. ization and i
means A is sub-entity of B, or B is super-entity of A.

ie,AlsB,
3. Candidate entities/attributes that appear on either side of a /s, /s-associated-with, or Is-part-of
relationship are considered as entities.

4-Instanges of Has and Belong. (o dependencies are used o identiy the atirbutes of the enties,
. A Has B (or B Belongs-fo A) means B is an attribute of entity

5. Instances of Is-associated-with dependency imply candidate association relationships.

6. Instances of /s-part-of dependency imply candidate decomposition refationships.

* Step 2 Depictevery entity by a rectangle, every attribute o an entity as a bubble connected fo it and
label (hem b their names. Every relationship between two entities can be represented by
o LaBaliery rolaonanS ALcording 1 the PG of Sopondore i aama Hom. 5.0,
|s-parl-of , etc

Stage 3: Design Construction

Design Construction Gmdelmes
Function view

= Step 1: Extract all instances of Action, Action dependency, and
Constraint classes from the object base and apply the following
rules on them:

1. Instances of Action class are the functions.

2. Instances of the Follow and Precede dependencies determine the time-order of
execution of the functions. To simplify the diagram generation, transform all the
Precede dependencies to Follow, i.e., for all functions f1 and 2, change
“f1Precede 2" to *f2 Follow 1"

3. The participants of a /s-parallel-with dependency must be executed concurrently.

4. The conditions for a function to follow another is determined by the Constraints
related to the function, actor, and working information in the corresponding
scenario that the “following” appears.

= Step2: Generate Follow+ relationship (the transitive-closure of the Follow).

= Step 3: Sort the functions in ascending order based on the number of the
functions they follow, i.e., based on the number of times they appear on
the left hand side of a Follow relationship.

= Step 4: Starting from the first of the list, depict the function (name A) wilh a
square and label it by its name. List all the functions that Follow A.
D and OR connectors when necessary. Next, all arrows are Iabeled with
the tm};genng conditions obtained in rule “4” above. Finally, remove A from
the list and repeat Step 4, until the list is empty.

Stage 3: Design Construction

Generated Function Diagram

Addremove
meny items.
tolfrom order

s (
08 Password -
Part of generated Function m
diagram for fast-food
restaurant

16-01-02

Stage 3: Design Construction

Generated E-R Diagram

goal = taking order & handling payment

order taking station

| Sgatern

in formation fer, price

action| . = compute price

action|; = repart price

data depe adenc Y| fa associated with ™

(1. 0T station,n, order) I Lo 1
data dependency) poong 1o = = I = =
(price, order) = I

action dependency|pre.

(compute price, report price)
Part of generated ER
diagram for fast-food

Decomposed scenario
restaurant

14
List of Actions in Order Taking
“« ” ,
Component and the “Follows ™ Relation
Index Action Follows™
1 Login using ID & password -
2 Logout the system 1
3 Review orders 1
4 Initiate order 1
5 Call-back unpaid orders 1
6 Edit orders 15
7 Compute price 156
8 Report price 1567
9 Defer order payment 15678
10 Enter cash-in 145678
11 Return change & receipt 1456.78.10
12 Send order to assembly station 156.78.10,11
13 Send excess cash to cash safe 1456,78.10,11,12
16
Conclusion
= Task scenarios: are used to generate the ingredients
of the design diagrams.
= Scenario generation: generating a set of structured
text-based scenarios that conform with a regular
expression syntax.
= Scenario decomposition: mapping generated
scenarios onto scenario schema which allows parsing
the structured scenarios and generating instances of
schema classes.
= Design construction: generating design diagrams in
Data and Function views using the decomposed
scenarios and based on a set of guidelines.
18

Knowledge Transformation from Task Scenarios
to View-based Design Diagrams

Nima Dezhkam
Kamran Sartipi

{dezhkan, sartipi}@mcmaster.ca

Department of Computing and Software
McMaster University
CANADA

McMaster SEKE’ 08

University @ July 1, 2008

Inspiing laaovation and Discovery

16-01-02

Request For Proposal (RFP)

Ma cF ood r estaurant system

MacFood is a new restaurant chain which offers fast food to the customers. It uses an

in-store computer system to assist order-taking and payment, food ion, delivery,
and inventory.

Orders and payments are taken by staff using “touch-screen" displays.

Kitchen and delivery staff view orders on displays, and register the status of orders by
pressing buttons of the keypads.

Inventory of the food and supplies is tracked by the computer system.

The restaurant manager is able to configure the system to set menu items , ingredients,
prices, inventory levels, and store setup.

The following section briefly introduces the various units of the MacFood System.

Fast Eood Restaurant System

Physical vie

Assembly Unit

* When an order is set up, the kitchen should be informed to prepare the order-
items.

* When the computer system determines that all items of an order are available in
the chutes, the order can be assembled.

* Each available assembly-station picks the order and displays it on its screen.

* The assembly-stations use screen and keypad for interaction with the staff.

* The staff assemble the orders, and using keypads inform the system. If the order is
paid, the system allows the delivery of the order to the customer, otherwise, the
delivery will be postponed to the time that the order is paid.

 If the system indicates that an order can be filled, but the chutes do not contain a

sufficient quantity of some order’s item, the staff report the shortage to the system
to be prepared.

Order-Taking Unit

* This unit sets up customer orders and handles payment.

* Menu items are selected from the restaurant-menu by touching buttons on the
touch-screen.

+ Selection of an item causes it to be added to the current order (which is displayed
in a scrollable window on the screen), and the subtotals / tax of the order arc
displayed.

* An order can be paid anytime between its set-up and delivery to the customer.

* The system keeps the cash balance of each order-taking station and has facilities
for supporting “cash float” (i.c., a specified amount of cash in the order-taking
station at the beginning) and “skim” (i.c., a threshold amount of cash, which once
exceeded, must be transferred to the cash balance) of each station.

« Each order is handled by only one order-taker; however, the orders could be
stored in a list and each order-taker in the system can access this list to service the
stored orders.

Food Preparation Unit

* In order to prepare an order, the system distributes order-items among preparation
stations, equipped to prepare certain items of the restaurant-menu.

+ In general, more than one station is capable of making a particular item. Each
station has a screen and a keypad. Similar items of different orders are grouped

together.

* Considering the number of items assigned to each station and its current load of
work, the system decides whether to send the items to that station or not.

+ The screcn of the preparation-station displays a list of items and their quantities.

+ Kitchen staff prepare the required quantity of an item, put them in the “chute”,
and using the keypad inform the system.

* There is one chute for each menu item.
* Menu_ items are prepared in response to real and anticipatory demands.

Anticipatory demands are set up by the manager to shorien the average time of
waiting for food.

Inventory Unit

* The inventory unit in the system keeps track of the consumption of all materials
used for ion and packaging of the order-it

* We refer to these materials as “raw-materials”. This unit has a very close
interaction with the preparation unit.

* The system keeps stock, and the inventory of raw materials is updated
dynamically.

* The arrival of new materials into storage is entered into the system by the staff,
and the consumption of the materials is dictated by the recipes of food-items.

* To preserve stock integrity, the system assumes a minimum threshold for usage of
each menu-item in the system. If the number of a certain menu-item drops below
this threshold, it is considered unavailable and the inventory unit alerts the order-
taking unit to inhibit taking that item.

Management Unit

The management-unit of the restaurant system is responsible for setting up:
* Active stations in order-taking, preparation, and assembly units.

* System tables such as restaurant-menu, recipes, anticipated demands, minimum
number of menu-items, and raw-materials in stock.

* List of menu-items to be prepared by each preparation station.
« Cash skim and float.
« Different applicable taxes.

* System time and date.

16-01-02

E-R diagram of the Restaurant System

110 0,1, many

1o 1,many Computed
o Orderin Iniiated by
il P 157~
wabnce) (price
e Consuled by

Selection

an. 4 Rovomatealat: Cashates
Itorigreens —stock quanity - oat
“staas ~recipe - e skim
(completed stored, pasd) i leve quanty
~ ot pricean stock qanty
~ amber o Hems ~price
~ aneipated chute-ttems

