
16-01-02

1

1

Anis Yousefi
McMaster University

yousea2@mcmaster.ca

November 7, 2011

Identifying Distributed Features in
SOA by Mining Dynamic Call Trees

ICSM 2011

The 3rd Workshop on Automatic Service Composition
-- CASCON 2011 --

Kamran Sartipi
Associate Professor

Faculty of Engineering and Applied Science
University of Ontario Institute of Technology

(UOIT)
 Kamran.Sartipi@uoit.ca

http://faculty.uoit.ca/sartipi/

2

Introduction

Ø  Complexities of distributed features:
n  Feature locations may change due to change of input parameters.
n  Execution traces are scattered among different service provider platforms.
n  Trace files contain interleaving of execution traces related to different concurrent

service users.

Ø  Proposed solution:
n  Define different sets of feature-specific scenarios and execute on SOA.
n  Collect and aggregate relevant distributed execution traces.
n  Mine the resulting dynamic call trees to spot: “feature-specific”, “omnipresent”,

and “noise” patterns.
n  Use metrics to identify the structural properties of the services.

Distributed nature and change over time of service computing impose
new challenges on identifying the quality of services for effective
service selection and composition.

We propose a technique for identifying distributed features by mining
scattered dynamic call-trees

3

Framework
for Feature Identification in SOA

Ø  Feature of interest: in SOA
environment, an enterprise application
consists of one or more service operations.
A service operation can be a specific feature
of interest, e.g., op1 of s1.

Ø  Goal: to run feature-specific scenario sets
to generate distributed execution traces, and
identify the execution pattern of the feature.

Ø  Feature-specific scenario set:
a group of task scenarios that all share a
specific feature.
Example: in banking service “deposit into a
bank account”, the operation “entering the
amount of money” can be the specific
feature (op1).

op1 can be feature of interest

4

Framework
for Feature Identification in SOA

Ø  Scenario Manager: configures
“Task Clients” to execute “feature-
specific scenario sets” on the SOA
system.

Ø  Trace Collector: collects and
aggregates distributed execution traces.

Ø  Pattern Mining Engine: discovers
frequent sub-trees from dynamic call-
trees of different execution traces.

Ø  Pattern Analyzer: identifies “feature
specific” patterns from “omni-present”
and “noise” patterns, and applies
metrics.

op1 can be feature of interest

5

Challenges in Dynamic Analysis of SOA

Ø  Deterministic vs. Non-deterministic features:
§  Deterministic: behavior of the feature is independent of input or �
 state of the system. This feature always generates the same call tree.
§  Non-deterministic: produces different call trees depending on the state and input
of the system. We define different Cases, where in each case some conditions are
imposed such that the feature shows the same behavior. E.g., withdraw money when
account exists and balance is enough.

Ø  Distribution of traces: execution of a scenario may involve several�
 services, and the traces are scattered among different platforms.
Ø  Concurrency of events: �
 a service is used by several�
 concurrent users.

Ø  Trace annotations: �
 Time (before/after relation) �
 Name (caller/callee relation) �
 Frequency (distinguish concurrent traces, blocks 3 & 4)

Block Execution
Tree

Service
Trace Files

6

Mining Dynamic Call-trees:
“Mining Frequent Sub-tree in a Forest”

§  Each array entry (e.g., P1{I}) consists
 of a pointer to the root of a subtree
 (P1) and the subtree’s support set ({I}).

§  Tree “I” is represented as string
 761052030004.
§  Minimum support threshold is two.

Forest of Trees

Ø  Frequent sub-tree mining algorithm builds bottom-up sub-trees.
Ø  Forest of trees is represented by a two dimensional array

Ø  Example with four iterations
of the mining process:

A frequent subtree is a subtree T′ such that the “cardinality” of its super-
trees T’s (namely, “support set” of T′) is greater than or equal to a given
“threshold value” (i.e., minimum support).

Running feature-specific scenario sets produces “Forest of Dynamic Call Trees”

16-01-02

2

7

Analysis of Extracted Patterns

Traces associated with two feature-
specific scenario sets and their
corresponding patterns. For simplicity
we have serialized each trace based
on the time of method entries.

Ø  Feature-Specific Patterns correspond to
the shared feature of a scenario set:
(feature 1: P3, deterministic),
(feature 2: P4 & P5, non-deterministic)

Ø  Omnipresent patterns are common
among all scenario sets:
(pattern P1 in both sets)

Ø  Noise patterns are random:
(pattern P2 in both sets)

Sc
en

ar
io

Se

t 1

(fe
at

ur
e

1)

Sc
en

ar
io

Se

t 2

(fe
at

ur
e

2)

8

Structural Analysis of SOA

Ø  Service Utilization: assessing a service based on how
it’s operations utilize other SOA services.

Sop: set of services contributing in the execution of operation “op”.
Mop: set of methods contributing in the execution of operation “op”.
Msi: {m1,m2, ..,mo} set of all methods in service “si”.

Ø  Call Frequency: communication overhead of a service.
Pop: {p1, p2, ..., pl} set of feature-specific patterns for operation op.
Spi: {s1, s2, ..., sm} set of services contributing in execution of pattern pi.
OPsi,pj: {op1, op2, .., opn} set of operations that are defined in the interface
of service si and called in pattern pj .

9

Case Study:
Service Oriented Banking

Two features: Withdraw & Email-money
Ø  Scenarios in each feature-specific set are

partitioned into a number of cases, where each
case examines a service operation in a specific
context.

Ø  Scenarios W9 and W10 examine operation
“withdraw” in the case that the account to be
withdrawn from exists and the amount to
withdraw is less than or equal available funds.

Part of the scenarios used
to examine “Mybank Account
Access Service”.

Circles are services, boxes are operations,
and arrows are service invocations. 10

Case Study:
Service Oriented Banking (frequent analysis)

§  Blocks 1 and 2 belong to different
scenarios.

§  We ran scenario EM2, 5 times; we
counted 5 instances of block 1 and 2
instances of block 2. Therefore, block
2 is irrelevant to scenario EM2 and
must be deleted from (b).

§  In (c), applying depth first traversal
on the resulting block execution tree.
The order of the blocks for
aggregation is 1, 4, 3, 5, 6, 7.

§  Trace Collector replaces each
instance of a remote service call with
the respective service trace block to
generate an execution trace for EM2.

Client for
scenario EM2

(a)  Trace files and blocks for scenario EM2.
(b)  Block execution tree before frequent analysis.
(c)  After frequency analysis. Block 2 is deleted.

11

Feature-specific Patterns

§  Feature specific patterns extracted
from the execution of withdraw on the
first system in page 8.

§  For simplicity we serialized each
pattern by noting only the sequence
of method entries.

§  Each pattern is a sequence of
method invocations separated by“,”.

§  Each method is specified as:
package-Name/className.methodName.

12

Service Utilization & Call Frequency

Call frequency of operation “withdraw” from “Mybank Account Access Service” and
“Banking Service”.

Execution pattern mining and analysis for operation “withdraw”.

Service utilization of operation “withdraw”
from “Mybank Account Access Service”
and “Banking Service”.

16-01-02

3

13

Conclusion

Ø  Identifying software features in distributed web services is much more
complex than that of monolithic systems.
n  Deterministic vs. non-deterministic features
n  Distributed traces in different platforms
n  Concurrency of traces in different service platforms.

Ø  We proposed mechanisms for: i) collecting and aggregating distributed
traces; ii) mining feature-specific and omni-present patterns for non-
deterministic features; assessing the structural merits of a SOA-based
system using pattern-mining results.

Ø  The proposed approach assists service selection for composition via:
n  Examining the structural quality of new web services.
n  Identifying services which contain buggy features or increase network

traffic.

Ø  The proposed approach requires close collaboration among
service providers and service users.

14

Anis Yousefi
McMaster University

yousea2@mcmaster.ca

November 7, 2011

Identifying Distributed Features in
SOA by Mining Dynamic Call Trees

ICSM 2011

The 3rd Workshop on Automatic Service Composition
-- CASCON 2011 --

Kamran Sartipi
Associate Professor

Faculty of Engineering and Applied Science
University of Ontario Institute of Technology

(UOIT)
 Kamran.Sartipi@uoit.ca

http://faculty.uoit.ca/sartipi/

15 16

 Abstract
Distributed nature of web service computing imposes new challenges on software
maintenance community for localizing different software features and maintaining
proper quality of service as the services change over time. In this paper, we propose a
new approach for identifying the implementation of web service features in a service
oriented architecture (SOA) by mining dynamic call trees that are collected from
distributed execution traces. The proposed approach addresses the complexities of
SOA-based systems that arise from: i) features whose locations may change due to
changing of input parameters; ii) execution traces that are scattered throughout different
service provider platforms, and ; iii) trace files that contain interleaving of execution traces
related to different concurrent service users. In this approach, we execute different
groups of feature-specific scenarios and mine the resulting dynamic call trees to spot
paths in the code of a service feature, which correspond to a specific user input and
system state. This allows us to focus on the implementation of a specific feature in a
distributed SOA-based system for different maintenance tasks such as bug localization,
structure evaluation, and performance analysis. We define a set of metrics to assess
structural properties of a SOA-based system. The effectiveness and applicability of our
approach is demonstrated through a case study consisting of two service-oriented
banking systems.

