16-01-02

The 3 Workshop on Automatic Service Composition
-- CASCON 2011 --

Identifying Distributed Features in
SOA by Mining Dynamic Call Trees
ICSM 2011

Anis Yousefi Kamran Sartipi
McMaster University Associate Professor
vousea2@mcmaster.ca Faculty of Engineering and Applied Science

University of Ontario Institute of Technology
(UOIT)

Kamran.Sartipi@uoit.ca
http://faculty.uoit.ca/sartipi/

November 7, 2011

GUoIT

Introduction

Distributed nature and change over time of service computing impose
new challenges on identifying the quality of services for effective
service selection and composition.

We propose a technique for identifying distributed features by mining
scattered dynamic call-trees

» Complexities of distributed features:
= Feature locations may change due to change of input parameters.
Execution traces are scattered among different service provider platforms.

Trace files contain interleaving of execution traces related to different concurrent
service users.
» Proposed solution:

= Define different sets of feature-specific scenarios and execute on SOA.

Collect and aggregate relevant distributed execution traces.

= Mine the resulting dynamic call trees to spot: “feature-specific”, “omnipresent”,
and “noise” patterns.
5 = Use metrics to identify the structural properties of the services. r IT

L s

Framework
for Feature Identification in SOA

op1 can be feature of interest

>

v

Feature of interest: in SOA
environment, an enterprise application
consists of one or more service operations.
A service operation can be a specific feature
of interest, e.g., op1 of s1.

Target SOA

Goal: to run feature-specific scenario sets
to generate distributed execution traces, and
identify the execution pattern of the feature.

Feature-specific scenario set:

a group of task scenarios that all share a
specific feature.

Example: in banking service “deposit into a
bank account”, the operation “entering the
amount of money” can be the specific
feature (op1).

Service with
one operation

O cien

> Senvice Call

——
.
e

@ croey

—> DataFlow

AW e

Framework
for Feature Identification in SOA

op1 can be feature of interest

»

-

» Scenario Manager: configures
“Task Clients” to execute “feature- Teraot SO
specific scenario sets” on the SOA
system.

» Trace Collector: collects and
aggregates distributed execution traces. Trace Callecor

> Pattern Mining Engine: discovers r.m
frequent sub-trees from dynamic call-
trees of different execution traces.

> Patt@rn Analyzer: 1dent1ﬁe§ “feature s s taco e
specific” patterns from “omni-present” O cien [Componentaine

. . proposed rameork
and ‘.‘nmse” patterns, and applies > Service Cal O
4 metrics. —> Data Flow

W cusacn

Challenges in Dynamic Analysis of SOA

5

% Deterministic vs. Non-deterministic features:
= Deterministic: behavior of the feature is independent of input or
state of the system. This feature always generates the same call tree.
= Non-deterministic: produces different call trees depending on the state and input
of the system. We define different Cases, where in each case some conditions are
imposed such that the feature shows the same behavior. E.g., withdraw money when
account exists and balance is enough.

> Distribution of traces: execution of a scenario may involve several

services, and the traces are scattered among different platforms.
s3
N Goo>
é (1 (?
S

Task Client st

> Concurrency of events:

a service is used by several
concurrent users.

> Trace annotations: — N sevice @ @ ©
I Fil
Time (before/after relation) client race Files @
Name (caller/callee relation) s4 s5

Frequency (distinguish concurrent traces, blocks 3 & 4)

Block Execution
l Tree

Mining Dynamic Call-trees:
“Mining Frequent Sub-tree in a Forest”

Running feature-specific scenario sets produces “Forest of Dynamic Call Trees”

A frequent subtree is a subtree T' such that the “cardinality” of its super-
trees T’s (namely, “support set” of T') is greater than or equal to a given
“threshold value” (i.e., minimum support).

» Frequent sub-tree mining algorithm builds bottom-up sub-trees.
» Forest of trees is represented by a two dimensional array

@ @ Forestof Trees
@ 0%0) @
or) o

@0 @0 @

o [0} [0}
L0: [PL{}[P2,{1} [P3,(1) [Pa,{1}]P,{un} [P, {11} P2,(11) [P3 {11} | P1,{11r) | P4,1ir)
L1: [P5,(1)[Ps,{in)[Pe,fii} |
L2: [P6,(1}|P6,(11} | P8,(uir} |
13: [P70]Pai

» Example with four iterations
of the mining process:

= Each array entry (e.g., P1{l}) consists
of a pointer to the root of a subtree
(P1) and the subtree’s support set ({1}).

Iteration 1:
L0: [PL{LILI P2,{LIT} [P3,{LIT} [P4,{LIIT} | P9,{i1}
Iteration 2:

L1: [PS (L]

= Tree “I” is represented as string
761052030004.

= Minimum support threshold is two.

6 Iteration 4:
13:

Ieration 3:
L2: [P6 (LI P8y

16-01-02

* Analysis of Extracted Patterns

e = m4m3 m8, m?;mZm
Traces associated with two feature- 3 @33 m8, m9, m7,@n3

SR F
specific scenario sets and their oe |t m ‘“10(“‘3-—“‘@
corresponding patterns. For simplicity mzm
we havg serialized each tr_ace based =:z§ mé
on the time of method entries. §g-,-3 m10/m0, mD

=

» Feature-Specific Patterns correspond to

* Structural Analysis of SOA

> Service Utilization: assessing a service based on how
it’s operations utilize other SOA services.

Sp: set of services contributing in the execution of operation “op”.
M,,: set of methods contributing in the execution of operation “op”.
Mg {m,,m,, ..,m.} set of all methods in service “si".

_ 1 [M, NMp|
SU(op) = TSon] * Zsiesop ML =

> Scenarios in each feature-specific set are e (WIS o open o 530
Cepom 2000y it
DTN

partitioned into a number of cases, where each
case examines a service operation in a specific

Account to | EM1 “emall_maney

] I
Email_Money | deposit S350, anks, 3000, 1500)
context. from does.
not exist
Accounts | EM2 TP Chor, 1008

> Scenarios W9 and W10 examine operation s, el ey (5
“withdraw” in the case that the account to be funds. e
withdrawn from exists and the amount to
withdraw is less than or equal available funds.

O cecnay & Barking e Part of the scenarios used
vibdan seree - to examine “Mybank Account

Access Service”.

Circles are services, boxes are operations,
and arrows are service invocations.

. 1 | p2 3 | p4 | p5
the shared feature of a scenario set: &l A 7)} > Call F . N— .
(feature 1: P3, deterministic) j\\ ; "\I » Call Frequency: communication overhead of a service.
o) o -2 P.,: {P1, P2, ... P} set of feature-specific patterns for operation op.
(feature 2: P4 & PS5, non-deterministic) HESK V} v S:,p {81, S, -y Sy} St Of SEIVices contributing in execution of pattern pi.
» Omnipresent patterns are common S [V v/ OPg; i {ops, 0Py, .., 0p,} set of operations that are defined in the interface
among all scenario sets: =7 % \ of service si and called in pattern pj .
(pattern P1 in both sets) e v I oo \oP,,, % CF(px) = '
> Noise patterns are random: HEAY v =1 2 = number of calls to s;.op;
(pattern P2 in both sets) Him\v 54 3 CcFm)
7 UT) 8 CFavg(op) = |Pop| ’
Case Study o winar vt o Wi aw TG0 500 Case Study
Service Oriented Banking e [[T Service Oriented Banking (frequent analysis)
Suene s = aparR CToR O
1 e :“."“"'[' ‘"qu C UJ)ZM s00; T
epom o ") ank Account
Two features: Withdraw & Email-money e ;gg::fiz; Qi) 2 Eellong) el soonene £z s S v
b e

o AN
Carils 5

= We ran scenario EM2, 5 times; we
counted 5 instances of block 1 and 2

instances of block 2. Therefore, block o
2 is irrelevant to scenario EM2 and ©]\

must be deleted from (b). st @
(6)

[Root) 2)

Gall Mb_Cha withdraw
K depos

&

= In (c), applying depth first traversal @
on the resulting block execution tree. omaEark arace O Account
The order of the blocks for B

Q R
aggregation is 1, 4, 3,5,6, 7. 2V
= Trace Collector replaces each CP g CP R
instance of a remote service call with ® ® @ ® 06 @
the respective service trace block to o @ o @

generate an execution trace for EM2. -
(a) Trace files and blocks for scenario EM2.

(b) Block execution tree before frequent analysis.
10 (c) After frequency analysis. Block 2 is deleted.

* Feature-specific Patterns

+Feature spedifc patems exracid | - ;foj;fifii‘liiZif”f&l":Z‘fﬂ:‘m

from the execution of withdraw on the niauensi Lot popeiatetou
st Sy 0 e comiomengacentimpiaub wihdraw, comyiom

ChascentimplSolince, o/ chqacentimp \srh;r ing, comibmnl

= For simplicity we serialized each
pattern by noting only the sequence
of method entries.

e cemsint sefocestbpatereaopen simesh e, Ty
accessinterfacestub.fromom

pattern 2: mybank/accessinterfacestub.withdraw, mybank;

<init>, ithdraw, mybank/
accessinterface.accountservicefor, mybank)
accessinterfacestub.getenvelopenamespaces, mybank;
accessinterfacestub. fromom

= Each pattern is a sequence of
method invocations separated by",".

patter 3. mybank/sccesitertacestubavithiraw, mybark
t

toenvelope,
mvth accessntertoce.<i (harv(accessinteface wihdraw, mybank

* Each method isspecified as: e T, ™
package-Name/c . methodName.

Chqacentimplatu <Ini, comyIbmyEhqacentmpitub.<ni, com/ibmy

etuniquesuffix, Jb.popul
‘comyibm/chaaccntimplstub. withdraw, comyibry

* Service Utilization & Call Frequency

‘ Execution pattern mining and analysis for operation “withdraw”. ‘

“Architecture | Number of | Number of | Number of | Average ‘Average Number of ‘Average
Scenarios Cases. Patterns Trace Size | Pattern Size | Feature-specific | Feature-specific
Patterns Pattern Size
Figure 6 (a) 12 4 26 51 23 3
TFigure 6 () 13 E3 7] T 7]
N e s " Architecture | Number of | Service Utilization
Service utilization of operation “withdraw’ Services
from “Mybank Account Access Service” A
W . S igure 6 (a) 2 041
and “Banking Service”. Figure 6 (0) 3 049
Architecture | Feafure-specific Total Number of | Call Frequency
Pattern Frequency of | Feature-specific
Remote Calls Patterns
Figure 6 (@) | pl 2 3 17
2 T
3 7
Figure 6) | pl T 7 2z
2 2
3 2
o4 3

Call frequency of operation “withdraw” from “Mybank Account Access Service” and
2 “Banking Service".

T ot comect

16-01-02

* Conclusion
I

» ldentifying software features in distributed web services is much more
complex than that of monolithic systems.
= Deterministic vs. non-deterministic features
= Distributed traces in different platforms
= Concurrency of traces in different service platforms.

» We proposed mechanisms for: i) collecting and aggregating distributed
traces; ii) mining feature-specific and omni-present patterns for non-
deterministic features; assessing the structural merits of a SOA-based
system using pattern-mining results.

» The proposed approach assists service selection for composition via:

= Examining the structural quality of new web services.
= Identifying services which contain buggy features or increase network
traffic.

» The proposed approach requires close collaboration among
service providers and service users.

GUoIT

The 3@ Workshop on Automatic Service Composition
-- CASCON 2011 --

Identifying Distributed Features in
SOA by Mining Dynamic Call Trees
ICSM 2011

Kamran Sartipi
Associate Professor
Faculty of Engineering and Applied Science
University of Ontario Institute of Technology
(UOIT)
Kamran.Sartipi@uoit.
http://faculty.uoit.ca/sartipi/

Anis Yousefi
McMaster University
k'()ll.Ve[lZ @mcmaster.ca

November 7, 2011

GUoIT

UoIT

* Abstract
I

Distributed nature of web service computing imposes new challenges on software

for localizing different software features and maintaining

proper quality of service as the services change over time. In this paper, we propose a
new approach for identifying the implementation of web service features in a service
oriented architecture (SOA) by mining dynamic call trees that are collected from
distributed ion traces. The d h add the complexities of
SOA-based systems that arise from: i) features whose locations may change due to

of input i) traces that are scattered throughout different
service provider platforms, and ; iii) trace files that contain interleaving of execution traces
related to different concurrent service users. In this approach, we execute different

groups of feature-specific scenarios and mine the resulting dynamic call trees to spot

paths in the code of a service feature, which correspond to a specific user input and

system state. This allows us to focus on the implementation of a specific feature in a
distributed SOA-based system for different maintenance tasks such as bug localization,
structure evaluation, and performance analysis. We define a set of metrics to assess
structural properties of a SOA-based system. The effectiveness and applicability of our
approach is demonstrated through a case study consisting of two service-oriented

banking systems.

G UOIT

