
12/8/09 1

MacBank ABM
Demonstration

By: Jasper Chan
Kevin Bezjak
Thomas Griffatong

2 12/8/09

Outline
  Course information
  What is software engineering? Why is it so important?
  Software Life Cycle
  What is a specification? How do you verify it?
  Request for Proposal – How do we transition from RFP

to SRS?
  Our SRS document
  How do we go from High-level design to Low-level

design?
  What is a MacBank ABM?
  ABM Implementation
  Conclusion
  What can we take home from all this?

3 12/8/09

Course Information

  Course: 3K04 - Software Development
  Professor: Dr. Kamran Sartipi
  Focus:

1.  Software Design Process
2.  Documentation
3.  Using Specification
4.  Module specification, interfaces, internal and

documentation
5.  Software inspection and testing
6.  Professional responsibility

4 12/8/09

People involved

  Jasper Chan
  3rd year

Mechatronics

  Kevin Bezjak

  3rd year Computer
Engineering

  Thomas Griffatong

  3rd year Computer
Engineering

5 12/8/09

What is Software Engineering?
  Software engineering is an engineering discipline which

is concerned with all aspects of software production
  The application of a systematic, disciplined, quantifiable

approach to the development, operation, and
maintenance of software -- IEEE definition

6 12/8/09

Why is Software Eng. Important?

  Standardization as to how to create a piece of software
to minimize errors

  Errors can be fatal!
  Therac-25

  Software failed to detect and prevent patient from receiving
overdose of radiation

  Inadequate software design and development process resulted in
the deaths of three people due to radiation poisoning

7 12/8/09

Software Life Cycle
1.  Requirements and analysis and specification

  Purpose: Identify and document the exact requirements for the system
Example: ABM interview, SRS

2.  System design and specification
1.  High-level/Architectural Design – overall organization of system in terms of

high level components and interactions among them
2.  Low-level/Detailed Design – Defining interfaces within in each component and

relationships between other components
  Example: SDS

3.  Coding and module testing
  Engineer produces actual code that will be delivered to customer

  Example: When we were physically coding our modules etc
4.  Integration and system testing

  All modules that have been developed and tested individually are put
together to be tested as a whole system

  Example: Putting it together to test, GUI etc
5.  Delivery and maintenance

  After system passes all tests, it is delivered to the customer and enters
modification phase

  Example: Lab 10 when we handed in our ABM software

8 12/8/09

Specification
  A statement of agreement between

producer and consumer
  Emphasizes on what to do vs how to do it

  Good specifications are precise, clear,
unambiguous, consistent with internal/
external completeness

  Example of good specifications:
  Keep track of the amount of money the ABM

machine contains in its stock and alert the
bank staff when the stock is equal, or less
than $10,000.

9 12/8/09

Specification (continued)
  Uses of Specification:

  Statement of user requirements
  Can lead to failure if not clear

  Statement of the interface between the machine and controlled
environment

  Miscommunication can cause unexpected inputs and the system
can fail

  Statement of requirements for implementation
  Write out SRS, SDS etc

  Reference point during maintenance
  Something you can refer to when you make an upgrade to the

system

10 12/8/09

Specification (continued)

  How do we verify specification?
1.  Observe dynamic behaviour of the system to

check whether it does what we think it
should do (aka simulator)

2.  Analyzing the properties of system to
deduce specifications (called property
analysis)

11 12/8/09

Request for Proposal (RFP) – How
do we transition from RFP to SRS?
  Document that provides us general information

with regards to the client, Brief hardware
specification and general software requirements
  It was our job to clarify ambiguous requirements and

inquire additional information for exact details as to
how each method was to be handled

 This was the given Request for Proposal

12 12/8/09

Our SRS document
  An SRS is the customer's assurance that the

development organization understands the issues or
problems to be solved and the software behaviour
necessary to address those problems

  Serves as an input to the design specification; parent
document to subsequent documents

  It also serves as a product validation check

1.  Careful review and analysis of RFP
2.  Generate questions to ask and clarify requirements

  Here is our SRS

13 12/8/09

How did we create our High-level
design?
  Information used from the SRS:

 User Interface
 Functional Requirements
 Use Case Diagram

14 12/8/09

Architecture

 Component diagram designed off the Use
Case

15 12/8/09

Architecture: User Interface

 User interface is where customer interacts
with machine

 Connected to transaction
 Customer uses it to call transactions
 Staff also use it for their needs

16 12/8/09

Architecture: Transaction

 User interface calls transactions
 Depending on input certain transaction

done
 Also communicates with the database for

accounts and their information to be used
 Updates database when customer finished

17 12/8/09

Architecture: Database

 Holds all info for ABM
 Amount of money left inside
 Customer accounts and information

18 12/8/09

Architecture: Staff Interface

 Uses the UI to access ABM for restocking
  In our software, we used a button to

represent it but in real life, it would be
replaced with a key hole

19 12/8/09

High Level Design – State Chart

20 12/8/09

High Level Design

 Started with the skeleton:
 Main screen, PIN screen and transactions
 Built off the base to incorporate more

advanced designs such as PIN errors and
turning off the ABM.

 Added step by step until all requirements are
met

21 12/8/09

How did we go from High-level to
Low-level design – Step 1
  Carefully review the High-level design state chart

and write out our module overview
 This is a crucial step since it is the basis for our low-

level design
 Our approach: sit down as a group and start writing

the module of the initial state of the machine to the
end
  Bring out ideas as to how to implement to create a better

idea as to what variables are needed, what other modules
can access it etc

22 12/8/09

Step 2

 We needed to then establish the
relationship between each module with a
Class Diagram
 This step helps us visualize how each module

is going to be used and ultimately,
implemented

23 12/8/09

Step 3

 Write out our Module Specification with
state charts for each individual module for
clarity and visual representation
 This describes in detail about each module

  Information such as the amount of variables, which
modules can call on etc is shown

24 12/8/09

What is the MacBank ABM?
  Automated Bank Machine (ABM) used to decrease

waiting time for clients who want to use basic banking
activities

Graphical User Interface (GUI)

Magnetic Card Reader

Keypad

Envelope slot

Money output

25 12/8/09

ABM Implementation

  Java was chosen because it has a GUI,
more libraries and is a lot more functional

 GUI:
 Created using the wizard
 Followed what was created in our

documentation

26 12/8/09

ABM Implementation (Part 2)

  30 sec Timer: ABM signs out if inactive
 Easily implemented with swing

  C would require a timer

 Reset accounts on midnight
 Accesses the system time of computer

  Not able to do this in C

27 12/8/09

ABM Implementation (Part 3)

 Classes:
 Using classes makes passing information for

transactions and database much easier
 Keeps certain data protected from access

28 12/8/09

ABM Demonstration

29 12/8/09

Conclusion
  What did we learn about teamwork?

  Full dedication to the project and team regardless of
personal schedules

  Rising up to the occasion when your teammate
requires help

  It is greatly beneficial to work with students from
different programs; widens the area of expertise
available at disposal

  Valuable Lesson:
  How to transition from interview to finished product

30 12/8/09

What can we take home from all this?
  We can safely say that we are confident in our own

abilities to be able to contribute our work for any future
SRS and SDS documents that may come in our future
career
  Don’t get cocky though! There is still a lot we can learn about

software development & documentation!

Heh.. Cock-y…

12/8/09 31

Thank you for your attention!

12/8/09 32

12/8/09 33

Return to page

