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Objectives

 Get to know Rational Rose
 Get Familiar with general functions of

Rational Rose for Modeling
 Create UML Diagrams with Rational

Rose
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Assumption

 You are familiar with Unified Modeling
Language (UML)
• Either

• Read a book on UML
• Been trained in UML
• Used UML on work project

 You are familiar with object oriented software
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Access To Rational Rose

 Available at student lab
 Can download full version from Rational

• 15-day trial license
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What is Rational Rose?

 ROSE = Rational Object Oriented Software Engineering
 Rational Rose is a set of visual modeling tools for

development of object oriented software.
 Visual Modeling is the process of graphically depicting the

system to be developed
• Presenting essential details
• Filtering out non-essential details
• Viewing the system from different perspectives
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Why Model?

 The UML models act as an architectural
blueprint for software development.

 Good models:
• Identify requirements and communicate information
• Allows focus on how system components interact,

without get bogged out in specific details
• Allows you to see relationships among design

components
• Improves communication across your team through

the use of common graphical language
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Visual Modeling Tools May Help
Mitigate these Problems

 Software that poorly fits user needs
 Inability to deal with changing requirements
 Software integration problems
 Discovery of serious flaws too late in the

project
 Software that is hard to maintain and extend
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When Should ROSE be Used?

 Modeling can be useful at any point in the application
development process.

 Initial Design Work  (Requirement Analysis and
Definition)
• Use Cases
• Class Diagrams
• Sequence Diagram

Spend your time dealing with issues such as the planned
uses of software system and how you will implement a
programming environment to address these issues--not
where and how you are going to place the buttons on
your first screen.
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When Should ROSE be Used?

 Refinement of Early Models (System & Software
Design)

 Introduced in Middle of Project
• Rational Rose includes tools for reverse engineering

as well as forward engineering of classes and
component architectures.

• You can gain valuable insights to your actual
constructed architecture and pinpoint deviations from
the original design.

• Rose offers a fast way for clients and new employees
to become familiar with system internals
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Rose

 Rose Enterprise:
• Supports multiple languages, including VC++, VB,

Java, CORBA
 Rose GUI:

• Standard ToolBar
• Diagram ToolBox
• Browser
• Diagram Window
• Documentation Window
• Specifications
• Log Window
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Your model is
Really in HERE! Diagram Window

Documentation Window

Browser Window

Diagram Toolbox

Log Window
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Rational Rose Interface

 The Rose standard toolbar (near the top of the window)
• is always displayed - independent of the current diagram type.
• While in Rose, place your cursor over the toolbar to display a

tooltip for each icon.

 The browser
• a hierarchical navigational tool allowing you to view the names and

icons representing diagrams and model elements.
• The plus (+) sign next to an icon indicates the item is collapsed

and additional information is located under the entry. Click on the +
sign and the tree is expanded.

• Conversely, a minus (-) sign indicates the entry is fully expanded.
• If the browser is not displayed, select Browser from the View

menu.
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Rational Rose Interface

 Diagram window
• Allows you to create, update, and model different

diagrams, that are, graphical views of the model

 Diagram toolbar
• Is unique to each diagram type and can be

customized.
• Is active only when a diagram is displayed.
• May be visible or hidden; docked or floating.
• As with the standard toolbar, placing your cursor on an

icon displays the tooltip for that icon.
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Toolbar for Class Diagrams

 Any element of a diagram can be created by
• placing the mouse pointer over a Tool in the Toolbar
• Drag&Drop over the diagram canvas

text

class

interface

asociation

Association class

packageNote Anchor

dependency or instantiation

Note
generalization

realization

Pointer
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 The Specification window – (right click on Use Case View
Package;  Open Specification…)
• Is a textual representation of a model element that allows

you to view and manipulate the element's properties.
• Note that information added to the documentation window

is automatically added to the documentation field in the
specification window.

 The Log window – (down at very bottom)
• Reports progress, results, and errors
• Right-click on Log window to see available actions

Rational Rose Interface
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Models, Views, Diagrams
 Models themselves are constructed using different views and diagrams to

accurately depict different stakeholder perspectives and the system’s building
blocks, respectively.

 Models are complete representations of the system.

 Views allow different stakeholders to see the system from their own
perspectives
• Views contain Models…

• E.g.  Logical View contains analysis model, business object model, design model
(Sometimes models can contain ‘views’ too…)

• Models generally contain a number of diagrams – some of these terms are
‘used’ interchangeably…

• E.g.  Design model contains class diagrams, sequence diagrams, and a number of
others….

 Diagrams: means by which we view of the system.
• Different building blocks (model elements) for different types.
• E.g.:  classes, interfaces, collaborations, components, nodes, 

dependencies, generalizations, and associations.
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Views

 Just as there are many views of a house under construction -
the floor plan, the wiring diagram, the elevation plan, there are
many views of a software project under development.

 Rational Rose is organized around the following views of a
software project:
• Use Case
• Logical
• Component
• Deployment

Each of these views presents a different aspect of the model
and is explained in subsequent slides.
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The use-case view

 The use-case view helps you to understand and use the
system. This view looks at how actors and use cases
interact.

 The diagrams in this view are:
• Use-case diagrams
• Sequence diagrams
• Collaboration diagrams
• Activity diagrams

This view contains a Main diagram by default. Additional
diagrams can be added throughout the analysis and
design process.
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The logical view

 The logical view addresses the functional
requirements of the system.

 This view looks at classes and their
relationships.

 The diagrams in this view are:
• Class diagrams
• Statechart diagrams

This view contains a Main diagram by default.
Additional diagrams can be added throughout
the analysis and design process.
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The component view

 The component view addresses the software
organization of the system.

 This view contains information about the
software, executable and library components
for the system.

 This view contains only component diagrams.

The component view contains a Main diagram
by default. Additional diagrams can be added
to this view throughout the analysis and design
process.
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The deployment view

 The deployment view shows the
mapping of processes to hardware.

 This type of diagram is most useful in a
distributed architecture environment
where you might have applications and
servers at different locations.

 This view contains only one diagram -the
deployment diagram.
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Diagrams

 Simply put, a diagram is a graphical representation of the
elements of your system.

 Different diagram types allow you to view your system from
multiple perspectives.

 You can create various types of diagrams in Rational Rose.
The diagram types include:
• Use-Case
• Class
• Activity
• Statechart
• Component
• Deployment

Each of these diagram types is explained in subsequent slides.
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Use-case diagrams

 Use-case diagrams present a high-level view of system
usage as viewed from an outsider's (actor's) perspective.

  These diagrams show the functionality of a system or a
class and how the system interacts with the outside
world.

 Use-case diagrams can be used during analysis to
capture the system requirements and to understand how
the system should work.

 During the design phase, use-case diagrams specify the
behavior of the system as implemented.

 Rose automatically creates a Main use-case diagram in
the use-case view. There are typically many use-case
diagrams in a single model.
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UC Diagram example
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Class diagrams

 A class diagram helps you visualize the
structural or static view of a system and is one
of the most common diagram types.

 Class diagrams show the relationships among
and details about each class.

 Class diagrams are also the foundation for
component and deployment diagrams.

 Rose automatically creates a Main class
diagram in the logical view. There are typically
many class diagrams in a single model.



30Introduction to Rational Rose

Class Diagram Sample
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Sequence diagrams

 A sequence diagram illustrates object interactions
arranged in a time sequence.

 These diagrams are typically associated with use cases.
  Sequence diagrams show you step-by-step what has to

happen to accomplish something in the use case.
 This type of diagram emphasizes the sequence of events,

whereas collaboration diagrams (an alternative view of
the same information) emphasize the relationship.

 This type of diagram is best used early in the design or
analysis phase because it is simple and easy to
comprehend.
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Sequence Diagram Example
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Collaboration diagrams

 Collaboration diagrams provide a view of the interactions
or structural relationships between objects in the current
model.

 This type of diagram emphasizes the relationship
between objects whereas sequence diagrams emphasize
the sequence of events.

 Collaboration diagrams contain objects, links, and
messages.

 Use collaboration diagrams as the primary vehicle to
describe interactions that express decisions about system
behavior.
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Collaboration Diagram Example
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Activity diagrams

 Activity diagrams model the workflow of a business process
and the sequence of activities in a process.

 These diagrams are very similar to a flowchart because you
can model a workflow from activity to activity or from activity to
state.

 It is often beneficial to create an activity diagram early in the
modeling of a process to help you understand the overall
process.

 Activity diagrams are also useful when you want to describe
parallel behavior or illustrate how behaviors in several use
cases interact.
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Activity Diagram Example
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Component diagrams

 Component diagrams provide a physical
view of the current model.

 They show the organization and
dependencies among software components,
including source code, binary code, and
executable components.

 You can create one or more component
diagrams to depict components and
packages or to represent the contents of
each component package.
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Component Diagram Example
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Deployment diagrams

 Each model contains a single
deployment diagram that shows the
mapping of processes to hardware.



40Introduction to Rational Rose

Deployment Diagram Example
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Statechart diagrams

 You can use statechart diagrams to model the dynamic
behavior of individual classes or objects.

 Statechart diagrams show the sequences of states that
an object goes through, the events that cause a transition
from one state or activity to another, and the actions that
result from a state or activity change.

 A statechart diagram is typically used to model the
discrete stages of an object's lifetime, whereas an activity
diagram is better suited to model the sequence of
activities in a process.
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Statechart Diagram Example
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Specifications

 Specifications are dialog boxes
that allow you to set or change
model element properties.

 Changes made to a model
element either through the
specification or directly on the
icon are automatically updated
throughout the model.
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Start Rational Rose

 Start Rose
• Start → Programs → Rational Rose
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Create a New Model

 When Rose is started
 When Rose has been

started:  File → New
 From Scratch: New
 From File System:

Existing OR Recent
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To Save a Model

 File → Save  o Save As
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Delete an Element

 Shallow Delete
• Edit Delete
• Select element in diagram → key DEL

 Deep Delete
• Select element in Browser → click right button →

Delete
• Select element in diagram → Click CTRL+D

It is not deleted from the MODEL!! (only from the diagram, not from Browser)

It is deleted from the MODEL!! (It will disapear from the diagram and from the Browser)
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Move Elements across Packages

 Drag&Drop in each Package Browser
from one to another
• One to One
• Pay attention: by moving the classes it does

not mean that associations will move as well!!
(Rational Rose 2000>)
• They are elements with Identity
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More Information

 UML Home Page -
http://www.platinum.com/corp/uml/uml.htm

 Online Tutorials for Rational Rose -
http://www.rational.com/products/rose/gstart/online.jtmpl

 Rose Whitepapers
http://www.rational.com/products/rose/prodinfo/whitepapers/ind
ex.jtmpl

 Rose Architect E-Magazine
http://www.rosearchitect.com/mag/index.shtml

 Visual Modeling with Rational Rose and UML,
by Terry Quatrani


