
1Introduction to Rational Rose

Rational Rose
Tutorial

Anis Yousefi
Teaching Assistant
SE3KO4 / SE3MO4

Software Development for Computer and
Electrical Engineering

Email: yousea2@mcmaster.ca

2Introduction to Rational Rose

Objectives

 Get to know Rational Rose
 Get Familiar with general functions of

Rational Rose for Modeling
 Create UML Diagrams with Rational

Rose

3Introduction to Rational Rose

Assumption

 You are familiar with Unified Modeling
Language (UML)
• Either

• Read a book on UML
• Been trained in UML
• Used UML on work project

 You are familiar with object oriented software

4Introduction to Rational Rose

Access To Rational Rose

 Available at student lab
 Can download full version from Rational

• 15-day trial license

5Introduction to Rational Rose

What is Rational Rose?

 ROSE = Rational Object Oriented Software Engineering
 Rational Rose is a set of visual modeling tools for

development of object oriented software.
 Visual Modeling is the process of graphically depicting the

system to be developed
• Presenting essential details
• Filtering out non-essential details
• Viewing the system from different perspectives

6Introduction to Rational Rose

Why Model?

 The UML models act as an architectural
blueprint for software development.

 Good models:
• Identify requirements and communicate information
• Allows focus on how system components interact,

without get bogged out in specific details
• Allows you to see relationships among design

components
• Improves communication across your team through

the use of common graphical language

7Introduction to Rational Rose

Visual Modeling Tools May Help
Mitigate these Problems

 Software that poorly fits user needs
 Inability to deal with changing requirements
 Software integration problems
 Discovery of serious flaws too late in the

project
 Software that is hard to maintain and extend

8Introduction to Rational Rose

When Should ROSE be Used?

 Modeling can be useful at any point in the application
development process.

 Initial Design Work (Requirement Analysis and
Definition)
• Use Cases
• Class Diagrams
• Sequence Diagram

Spend your time dealing with issues such as the planned
uses of software system and how you will implement a
programming environment to address these issues--not
where and how you are going to place the buttons on
your first screen.

9Introduction to Rational Rose

When Should ROSE be Used?

 Refinement of Early Models (System & Software
Design)

 Introduced in Middle of Project
• Rational Rose includes tools for reverse engineering

as well as forward engineering of classes and
component architectures.

• You can gain valuable insights to your actual
constructed architecture and pinpoint deviations from
the original design.

• Rose offers a fast way for clients and new employees
to become familiar with system internals

10Introduction to Rational Rose

Rose

 Rose Enterprise:
• Supports multiple languages, including VC++, VB,

Java, CORBA
 Rose GUI:

• Standard ToolBar
• Diagram ToolBox
• Browser
• Diagram Window
• Documentation Window
• Specifications
• Log Window

11Introduction to Rational Rose

Your model is
Really in HERE! Diagram Window

Documentation Window

Browser Window

Diagram Toolbox

Log Window

12Introduction to Rational Rose

Rational Rose Interface

 The Rose standard toolbar (near the top of the window)
• is always displayed - independent of the current diagram type.
• While in Rose, place your cursor over the toolbar to display a

tooltip for each icon.

 The browser
• a hierarchical navigational tool allowing you to view the names and

icons representing diagrams and model elements.
• The plus (+) sign next to an icon indicates the item is collapsed

and additional information is located under the entry. Click on the +
sign and the tree is expanded.

• Conversely, a minus (-) sign indicates the entry is fully expanded.
• If the browser is not displayed, select Browser from the View

menu.

13Introduction to Rational Rose

Rational Rose Interface

 Diagram window
• Allows you to create, update, and model different

diagrams, that are, graphical views of the model

 Diagram toolbar
• Is unique to each diagram type and can be

customized.
• Is active only when a diagram is displayed.
• May be visible or hidden; docked or floating.
• As with the standard toolbar, placing your cursor on an

icon displays the tooltip for that icon.

14Introduction to Rational Rose

Toolbar for Class Diagrams

 Any element of a diagram can be created by
• placing the mouse pointer over a Tool in the Toolbar
• Drag&Drop over the diagram canvas

text

class

interface

asociation

Association class

packageNote Anchor

dependency or instantiation

Note
generalization

realization

Pointer

15Introduction to Rational Rose

 The Specification window – (right click on Use Case View
Package; Open Specification…)
• Is a textual representation of a model element that allows

you to view and manipulate the element's properties.
• Note that information added to the documentation window

is automatically added to the documentation field in the
specification window.

 The Log window – (down at very bottom)
• Reports progress, results, and errors
• Right-click on Log window to see available actions

Rational Rose Interface

16Introduction to Rational Rose

Models, Views, Diagrams
 Models themselves are constructed using different views and diagrams to

accurately depict different stakeholder perspectives and the system’s building
blocks, respectively.

 Models are complete representations of the system.

 Views allow different stakeholders to see the system from their own
perspectives
• Views contain Models…

• E.g. Logical View contains analysis model, business object model, design model
(Sometimes models can contain ‘views’ too…)

• Models generally contain a number of diagrams – some of these terms are
‘used’ interchangeably…

• E.g. Design model contains class diagrams, sequence diagrams, and a number of
others….

 Diagrams: means by which we view of the system.
• Different building blocks (model elements) for different types.
• E.g.: classes, interfaces, collaborations, components, nodes,

dependencies, generalizations, and associations.

17Introduction to Rational Rose

Views

 Just as there are many views of a house under construction -
the floor plan, the wiring diagram, the elevation plan, there are
many views of a software project under development.

 Rational Rose is organized around the following views of a
software project:
• Use Case
• Logical
• Component
• Deployment

Each of these views presents a different aspect of the model
and is explained in subsequent slides.

18Introduction to Rational Rose

The use-case view

 The use-case view helps you to understand and use the
system. This view looks at how actors and use cases
interact.

 The diagrams in this view are:
• Use-case diagrams
• Sequence diagrams
• Collaboration diagrams
• Activity diagrams

This view contains a Main diagram by default. Additional
diagrams can be added throughout the analysis and
design process.

19Introduction to Rational Rose

20Introduction to Rational Rose

The logical view

 The logical view addresses the functional
requirements of the system.

 This view looks at classes and their
relationships.

 The diagrams in this view are:
• Class diagrams
• Statechart diagrams

This view contains a Main diagram by default.
Additional diagrams can be added throughout
the analysis and design process.

Lect 1: Rational Rose Tutorial 21
Introduction to Rational Rose

22Introduction to Rational Rose

The component view

 The component view addresses the software
organization of the system.

 This view contains information about the
software, executable and library components
for the system.

 This view contains only component diagrams.

The component view contains a Main diagram
by default. Additional diagrams can be added
to this view throughout the analysis and design
process.

23Introduction to Rational Rose

24Introduction to Rational Rose

The deployment view

 The deployment view shows the
mapping of processes to hardware.

 This type of diagram is most useful in a
distributed architecture environment
where you might have applications and
servers at different locations.

 This view contains only one diagram -the
deployment diagram.

25Introduction to Rational Rose

26Introduction to Rational Rose

Diagrams

 Simply put, a diagram is a graphical representation of the
elements of your system.

 Different diagram types allow you to view your system from
multiple perspectives.

 You can create various types of diagrams in Rational Rose.
The diagram types include:
• Use-Case
• Class
• Activity
• Statechart
• Component
• Deployment

Each of these diagram types is explained in subsequent slides.

27Introduction to Rational Rose

Use-case diagrams

 Use-case diagrams present a high-level view of system
usage as viewed from an outsider's (actor's) perspective.

 These diagrams show the functionality of a system or a
class and how the system interacts with the outside
world.

 Use-case diagrams can be used during analysis to
capture the system requirements and to understand how
the system should work.

 During the design phase, use-case diagrams specify the
behavior of the system as implemented.

 Rose automatically creates a Main use-case diagram in
the use-case view. There are typically many use-case
diagrams in a single model.

28Introduction to Rational Rose

UC Diagram example

29Introduction to Rational Rose

Class diagrams

 A class diagram helps you visualize the
structural or static view of a system and is one
of the most common diagram types.

 Class diagrams show the relationships among
and details about each class.

 Class diagrams are also the foundation for
component and deployment diagrams.

 Rose automatically creates a Main class
diagram in the logical view. There are typically
many class diagrams in a single model.

30Introduction to Rational Rose

Class Diagram Sample

31Introduction to Rational Rose

Sequence diagrams

 A sequence diagram illustrates object interactions
arranged in a time sequence.

 These diagrams are typically associated with use cases.
 Sequence diagrams show you step-by-step what has to

happen to accomplish something in the use case.
 This type of diagram emphasizes the sequence of events,

whereas collaboration diagrams (an alternative view of
the same information) emphasize the relationship.

 This type of diagram is best used early in the design or
analysis phase because it is simple and easy to
comprehend.

32Introduction to Rational Rose

Sequence Diagram Example

33Introduction to Rational Rose

Collaboration diagrams

 Collaboration diagrams provide a view of the interactions
or structural relationships between objects in the current
model.

 This type of diagram emphasizes the relationship
between objects whereas sequence diagrams emphasize
the sequence of events.

 Collaboration diagrams contain objects, links, and
messages.

 Use collaboration diagrams as the primary vehicle to
describe interactions that express decisions about system
behavior.

34Introduction to Rational Rose

Collaboration Diagram Example

35Introduction to Rational Rose

Activity diagrams

 Activity diagrams model the workflow of a business process
and the sequence of activities in a process.

 These diagrams are very similar to a flowchart because you
can model a workflow from activity to activity or from activity to
state.

 It is often beneficial to create an activity diagram early in the
modeling of a process to help you understand the overall
process.

 Activity diagrams are also useful when you want to describe
parallel behavior or illustrate how behaviors in several use
cases interact.

36Introduction to Rational Rose

Activity Diagram Example

37Introduction to Rational Rose

Component diagrams

 Component diagrams provide a physical
view of the current model.

 They show the organization and
dependencies among software components,
including source code, binary code, and
executable components.

 You can create one or more component
diagrams to depict components and
packages or to represent the contents of
each component package.

38Introduction to Rational Rose

Component Diagram Example

39Introduction to Rational Rose

Deployment diagrams

 Each model contains a single
deployment diagram that shows the
mapping of processes to hardware.

40Introduction to Rational Rose

Deployment Diagram Example

41Introduction to Rational Rose

Statechart diagrams

 You can use statechart diagrams to model the dynamic
behavior of individual classes or objects.

 Statechart diagrams show the sequences of states that
an object goes through, the events that cause a transition
from one state or activity to another, and the actions that
result from a state or activity change.

 A statechart diagram is typically used to model the
discrete stages of an object's lifetime, whereas an activity
diagram is better suited to model the sequence of
activities in a process.

42Introduction to Rational Rose

Statechart Diagram Example

43Introduction to Rational Rose

Specifications

 Specifications are dialog boxes
that allow you to set or change
model element properties.

 Changes made to a model
element either through the
specification or directly on the
icon are automatically updated
throughout the model.

44Introduction to Rational Rose

Start Rational Rose

 Start Rose
• Start → Programs → Rational Rose

45Introduction to Rational Rose

Create a New Model

 When Rose is started
 When Rose has been

started: File → New
 From Scratch: New
 From File System:

Existing OR Recent

46Introduction to Rational Rose

To Save a Model

 File → Save o Save As

47Introduction to Rational Rose

Delete an Element

 Shallow Delete
• Edit Delete
• Select element in diagram → key DEL

 Deep Delete
• Select element in Browser → click right button →

Delete
• Select element in diagram → Click CTRL+D

It is not deleted from the MODEL!! (only from the diagram, not from Browser)

It is deleted from the MODEL!! (It will disapear from the diagram and from the Browser)

48Introduction to Rational Rose

Move Elements across Packages

 Drag&Drop in each Package Browser
from one to another
• One to One
• Pay attention: by moving the classes it does

not mean that associations will move as well!!
(Rational Rose 2000>)
• They are elements with Identity

49Introduction to Rational Rose

More Information

 UML Home Page -
http://www.platinum.com/corp/uml/uml.htm

 Online Tutorials for Rational Rose -
http://www.rational.com/products/rose/gstart/online.jtmpl

 Rose Whitepapers
http://www.rational.com/products/rose/prodinfo/whitepapers/ind
ex.jtmpl

 Rose Architect E-Magazine
http://www.rosearchitect.com/mag/index.shtml

 Visual Modeling with Rational Rose and UML,
by Terry Quatrani

