Logic Specification and Z Schema

3K04

McMaster

Basic Logic Operators

- Logical negation (¬)
- Logical conjunction (Λ or &)
- Logical disjunction (V or ||)
- Logical implication (→)
- Logical equality (= or ↔)

Logic Negation

NOT p (also written as ¬p)

p	$\neg p$
1	0
0	1

Logic Conjunction

• **p AND q** (also written as **p** \wedge **q**, **p & q**, or **p**•**q**)

p	\boldsymbol{q}	$p \cdot q$
1	1	1
1	0	0
0	1	0
0	0	0

Logic Disjunction

p OR q (also written as p ∨ q or p + q)

p	q	p+q
1	1	1
1	0	1
0	1	1
0	0	0

Logic Implication

p implies q (also written as p → q, not p or q)

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Logic Equality

p EQ q (also written as p = q, p ↔ q, or p =
q)

p	\boldsymbol{q}	$p \equiv q$
Т	T	T
Т	F	F
F	Т	F
F	F	Т

First-order logic

 While propositional logic deals with simple declarative propositions, first-order logic additionally covers predicates and quantification.

 Each interpretation of first-order logic includes a domain of discourse over which the quantifiers range.

Predicate

- A predicate resembles a function that returns either True or False.
- Consider the following sentences: "Socrates is a philosopher", "Plato is a philosopher".
- In propositional logic these are treated as two unrelated propositions, denoted for example by p and q.
- In first-order logic, however, the sentences can be expressed in a more parallel manner using the predicate Phil(a), which asserts that the object represented by a is a philosopher.

Quantifier

- \forall universal quantifier; \exists existential quantifier
- Let Phil(a) assert a is a philosopher and let Schol
 (a) assert that a is a scholar
- For every a, if a is a philosopher then a is a scholar. $\forall a(\text{Phil}(a) \rightarrow \text{Schol}(a))$
- If *a* is a philosopher then *a* is a scholar.

$$\exists a(\mathrm{Phil}(a) \land \neg \mathrm{Schol}(a)).$$

Z notation

 The Z notation, is a formal specification language used for describing and modeling computing systems.

 It is targeted at the clear specification of computer programs and the formulation of proofs about the intended program behavior.

Z Schemas

- The Z schema is a graphical notation for describing
 - State spaces
 - operations

- The declarations part of the schema will contains:
 - A list of variable declarations
 - References to other schemas (schema inclusion)

 The predicate part of a schema contains a list of predicates, separated either by semi-colons or new lines.

State Space Schemas

 Here is an example state-space schema, representing part of a system that records details about the phone numbers of staff.

```
_PhoneBook _____
known : IP NAME
tel : NAME → PHONE
dom tel = known
```

Assume that NAME is a set of names, and PHONE is a set of phone numbers.

Operation Schemas

- In specifying a system operation, we must consider:
 - The objects that are accessed by the operation;
 - The pre-conditions of the operation, i.e., the things that must be true for the operation to succeed;
 - The post-conditions, i.e., the things that will be true after the operation, if the pre-condition was satisfied before the operation.

- Consider the 'lookup' operation: input a name, output a phone number.
 - This operation accesses the PhoneBook schema;
 - It does not change it;
 - It takes a single 'input', and produces a single output;
 - Pre-condition: the name is known to the database.

- This illustrates the following Z conventions:
 - Placing the name of the schema in the declaration part 'includes' that schema;
 - 'input' variable names are terminated by a question mark;
 - 'output' variables are terminated by an exclamation mark;
 - The Ξ (Xi) symbol means that the PhoneBook schema is not changed; if we write a Δ (delta) instead, it would mean that the PhoneBook schema did change.

Add a name/phone pair to the phone book.

```
\triangle AddName \_ \triangle PhoneBook name?: NAME phone?: PHONE name? \not\in known tel' = tel \cup \{name? \mapsto phone?\}
```

 Appending a 'to a variable means "the variable after the operation is performed".

Example: Video Rental Shop

Returning a video

Removal of a video from the stock

Find a video

 $MESSAGE ::= is_in_stock \mid is_booked_out$

```
FindVideo \_\_
```

 $\Xi Video_shop$ video?:VIDEO

message!: MESSAGE

 $video? \in all_videos$ $video? \in in_stock \Rightarrow message! = is_in_stock$ $video? \notin in_stock \Rightarrow message! = is_booked_out$

List all videos

 $.ListVideos___$

 $\Xi Video_shop$

 $list!: P\ VIDEO$

 $list! = all_videos$

Example: Sale Theater tickets

```
[Seat]
[Person]

__TicketsForPerformance0 _____
seating: ℙ Seat
sold: Seat → Person

dom sold ⊆ seating
```

- Informal specification
 - Theater: Tickets for the first night are only sold to friends

Specification in Z

Status ::= standard | firstNight

```
\_Friends\_\_
friends: \mathbb{P} \ Person
status: Status
sold: Seat \rightarrow Person
status = firstNight \Rightarrow \mathbf{ran} \ sold \subseteq friends
```

$TicketsForPerformance1 \cong TicketsForPerformance0 \land Friends$

and

_TicketsForPerformance1 ______ Friends

Tickets For Performance 0

$TicketsForPerformance1 \cong TicketsForPerformance0 \land Friends$

and

```
TicketsForPerformance1 _____
Friends
TicketsForPerformance0
```

are the same as

```
__TicketsForPerformance1 ____
friends: P Person; status: Status
sold: Seat → Person; seating: P Seat
status = firstNight ⇒ ransold ⊆ friends
dom sold ⊆ seating
```

Selling tickets

Response ::= okay | sorry

__Success ____
r! : Response
r! = okay

Then

*Purchase*0 ∧ *Success*

is a schema that reports successful ticket sale.

Selling tickets, but only to friends if first night performance

```
Purchase1
\Delta TicketsForPerformance1
s? : Seat
p?: Person
s? \in seating \setminus \mathbf{dom} \, sold
status = firstNight \Rightarrow (p? \in friends)
sold' = sold \cup \{s? \mapsto p?\}
seating' = seating
status' = status
friends' = friends
```

Not Available.

 $\Xi TicketsForPerformance1$

s? : Seat

p?: Person

 $s? \in \mathbf{dom} \, sold \vee (status = firstNight \wedge \neg \, p? \in friends)$

_Failure ____ r! : Response

r! = sorry

TicketServiceForPerformance = (Purchase1 ∧ Success) ∨ (NotAvailable ∧ Failure)

Composition of Operation Schemas

Purchase1 \cong Purchase1[s?/s2?]

is equivalent to

```
\Delta TicketsForPerformance1
s?: Seat; s2?: Seat; p?: Person
s? \in seating \setminus \mathbf{dom} sold
s2? \in seating \setminus \mathbf{dom} (sold \cup \{s? \mapsto p?\})
status = firstNight \Rightarrow (p? \in friends)
sold' = sold \cup \{s? \mapsto p?, s2? \mapsto p?\}
seating' = seating
status' = status
friends' = friends
```

Example: Order Invoicing

```
[OrderId, Product]

OrderState ::= pending | invoiced

Stock _____
stock : bag Product
```

 $Order == \{order : bag Product \mid order \neq \emptyset\}$

Order Invoices

OrderInvoices _____

 $orders: OrderId \rightarrow Order$

 $orderStatus: OrderId \rightarrow OrderState$

dom orders = dom orderStatus

State

 $State _$ Stock OrderInvoices $newids : \mathbb{P} \ OrderId$ $dom \ orders \cap newids = \emptyset$

```
State'
stock' = \varnothing
orders' = \varnothing
newids' = OrderId
```

```
\Delta State
State
State'
newids' = newids \setminus dom\ orders'
\Delta State
\Delta State
```

```
\Delta State
id?: OrderId

orders(id?) \sqsubseteq stock
orderStatus(id?) = pending
stock' = stock \uplus orders(id?)
orders' = orders
orderStatus' = orderStatus \oplus \{id? \mapsto invoiced\}
```

 $Report ::= OK \mid order_not_pending \mid not_enough_stock \mid no_more_ids$

```
Success
rep! : Report
rep! = OK
```

InvoiceError_

 $\Xi State$

id?: OrderId

rep! : Report

 $orderStatus(id?) \neq pending$ $rep! = order_not_pending$

StockError.

 $\Xi State$

id?: OrderId

rep! : Report

 $\neg \ orders(id?) \sqsubseteq stock$

 $rep! = not_enough_stock$

A total operation for ordering

```
InvoiceOrderOp == \\ (InvoiceOrder \land Success) \lor InvoiceError \lor StockError
```