Logic Specification and Z Schema

_ogica
_Logica

_ogica

_ogica

_ogica

Basic Logic Operators

negation (-)
conjunction (A or &)
disjunction (V or ||)
implication (>)
equality (= or)

Logic Negation

 NOT p (also written as -p)

Logic Conjunction

* p AND q (also writtenasp A q,p & q, or p-q)

P q P-9q

o
-
o o O

Logic Disjunction

* pORq (alsowrittenasp V qorp+q)

o O
o
o

Logic Implication

* p implies q (also written as p < q, not p or q)

p q P—q
T T T
T F F
F T T
F F T

Logic Equality

e pEQq (alsowrittenasp=q,pé>q,orp =
q)

M| |- ||
m 4 m R

First-order logic

* While propositional logic deals with simple
declarative propositions, first-order logic
additionally covers predicates and
guantification.

* Each interpretation of first-order logic

includes a domain of discourse over which the
guantifiers range.

Predicate

A predicate resembles a function that returns either True or
False.

Consider the following sentences: "Socrates is a
philosopher"”, "Plato is a philosopher".

In propositional logic these are treated as two unrelated
propositions, denoted for example by p and q.

In first-order logic, however, the sentences can be
expressed in a more parallel manner using the predicate
Phil(a), which asserts that the object represented by a is a
philosopher.

Quantifier

¥ - universal quantifier; - - existential guantifier

Let Phil(a) assert a is a philosopher and let Schol
(a) assert that a is a scholar

For every q, if a is a philosopher then g is a
scholar. Va(Phil(a) — Schol(a))

If a is a philosopher then a is a scholar.
da(Phil(a) A =Schol(a)).

/ notation

 The Z notation, is a formal specification
language used for describing and modeling
computing systems.

* |tis targeted at the clear specification of
computer programs and the formulation of
proofs about the intended program behavior.

/ Schemas

* The Zschema is a graphical notation for
describing
— State spaces
— operations

_SchemaName
Declarations

Predicate,: ---: Predicate,

or of the form

SchemaName
Declarations

 The declarations part of the schema will
contains:

— A list of variable declarations
— References to other schemas (schema inclusion)

* The predicate part of a schema contains a list

of predicates, separated either by semi-colons
or new lines.

State Space Schemas

* Here is an example state-space schema,
representing part of a system that records

details about the phone numbers of staff.

_PhoneBook
known : I°P NAME
tel : NAME + PHONE

dom tel = known

Assume that NAME is a set of names, and
PHONE is a set of phone numbers.

Operation Schemas

* |n specifying a system operation, we must
consider:

— The objects that are accessed by the operation;

— The pre-conditions of the operation, i.e., the
things that must be true for the operation to
succeed;

— The post-conditions, i.e., the things that will be
true after the operation, if the pre-condition was
satisfied before the operation.

* Consider the ‘lookup’ operation: input a name,
output a phone number.
— This operation accesses the PhoneBook schema;

— It does not change it;

— It takes a single ‘input’, and produces a single
output;
— Pre-condition: the name is known to the database.
_Find
=PhoneBook

name?! : NAME
phone! : PHONE

name? € known

phone! = tel(name?)

* This illustrates the following Z conventions:

— Placing the name of the schema in the declaration
part ‘includes’ that schema;

— ‘input’ variab
guestion mar
— ‘output’ varia

e names are terminated by a
K,

bles are terminated by an

exclamation mark;

— The = (Xi) symbol means that the PhoneBook
schema is not changed; if we write a A (delta)
instead, it would mean that the PhoneBook
schema did change.

* Add a name/phone pair to the phone book.

_AddName
A PhoneBook
name”’ : NAME
phone? : PHONE

name? & known

tel' = tel U {name? v phone? }

* Appending a ‘to a variable means “the
variable after the operation is performed”.

Example: Video Rental Shop

'VIDEO]

_ Vadeo_shop
all_videos, in_stock, booked_out : P VIDEO

in__stock U booked_out = all_videos

Returning a video

— Vaideo_returned

A Video_shop
video? : VIDEO

video”? € booked_out

booked_out” = booked_out — {video?}
in_stock’” = in_stock U {video?}
all_videos’ = all_wvideos

Removal of a video from the stock

 RemowveVideo

A Video_shop
video? : VIDEQ

video? € all_videos
all_videos’ = all_videos — { video! }
in_stock’” = in_stock — {video?}

booked_out" = booked_out — {video?}

Find a video

MESSAGE ::= 1s_in_stock

1s_booked_out

— FindVideo

= Video_shop
video? : VIDEQ
message! : MESSAGE

video”? € all_videos
1S_in_stock

video? € in_stock = message!
video? & in_stock = message! = is_booked_out

List all videos

~ ListVideos

= Video_shop

list! : P VIDEO

list! = all_wvideos

Example: Sale Theater tickets

[Seat]
[Person]

_TicketsForPerformance0
seatin qg: P Seat
sold : Seat -+ Person

domssold C seating

* |Informal specification

— Theater: Tickets for the first night are only sold to
friends

e Specification in Z
Status ::= standard | firstNight

_ Friends
friends : P Person
status : Status
sold : Seat + Person

status = firstNight = ransold C friends

TicketsForPerformancel = TicketsForPerformance0 A Friends

and
TicketsForPerformancel
Friends
TicketsForPerformanceQ

TicketsForPerformancel = TicketsForPerformance0 A Friends

and
TicketsForPerformancel
Friends
TicketsForPerformanceQ

are the same as

__TicketsForPerformancel
friends : P Person; status : Status
sold : Seat + Person; seating : P Seat

status = firstNight = ransold C friends
domssold C seating

Selling tickets

— Purchase0

TicketsForPerformanceQ
TicketsForPerformanceQ’
s? : Seat

p? : Person

s? € seating\ dom sold

sold" = sold U {s? — p?}
seating' = seating
C C

Response ::= okay | sorry

— Success
r! . Response

r! = okay

Then

PurchaseQ N Success

is @ schema that reports successful ticket sale.

Selling tickets, but only to friends if
first night performance

_ Purchasel
ATicketsForPerformancel
s? : Seat
p? . Person

s? € seating\ domsold

status = firstNight = (p? € friends)
sold" = sold U {s? — p?}

ortinne! — cnatie ‘

b(;ﬂtlll(;{ = seating

status’ = status

friends" = friends

___NotAvailable

ETicketsForPerformancel
s? : Seat
p? : Person

s? € domsold V (status = firstNight N\ — p? € friends)

_ Failure

rl . Response

rl = sorry

TicketServiceForPerformance =
(Purchasel N Success) V
(NotAvailable N\ Failure)

Composition of Operation Schemas

Purchasel § Purchasel[s?/s2?]
IS equivalent to

ATicketsForPerformancel
s? : Seat; 27 : Seat; p? : Person

s? € seating\ domsold
s2? € seating\ dom(sold U {s? — p?})
status = firstNight = (p? € friends)
sold" = sold U {s? — p?,52? — p?}
seating’ = seating

Q/ C
status’ = status
friends’ = friends

Example: Order Invoicing

(Orderld, Product]

OrderState ::= pending | invoiced

__Stock
stock : bag Product

Order == {order : bag Product | order # @}

Order Invoices

__ OrderInvoices

orders : Orderld + Order
orderStatus : Orderld + OrderState

dom orders = dom orderStatus

State

___State

Stock
OrderInvoices
newids : P Orderld

dom orders N newids = &

___InitState

State’

stock' = @
orders' = @
newids' = Orderld

__AState
State
State’

newids' = newids \ dom orders’

__InvoiceOrder
AState
1d? : Orderld

orders(id?) C stock

orderStatus(id?) = pending

stock’ = stock J orders(id?)

orders' = orders

orderStatus' = orderStatus & {id? — invoiced)

Report ::= OK | order_not_pending | not_enough_stock | no_more_ids

__Success
rep! : Report

rep! = OK

__InvoiceError

= State
1d? : Orderld

rep! : Report

orderStatus(id?) # pending
rep! = order_not_pending

__StockError

= State
id? : Orderld
rep! : Report

- orders(id?) C stock
rep! = not_enough_stock

A total operation for ordering

InvoiceOrderOp ==
(InvoiceOrder A Success) V InvoiceError V StockError

