Informal analysis techniques
Code walkthroughs

Based on “playing the computer” operations

Recommended prescriptions
— Small number of people (three to five)

Participants receive written documentation from the designer a few days
before the meeting

Predefined duration of meeting (a few hours)
Focus on the discovery of errors, not on fixing them
Participants: designer, moderator, and a secretary

Foster cooperation; no evaluation of people

e Experience shows that most errors are discovered by the designer during the
presentation, while trying to explain the design decisions to other people.




Informal analysis techniques
Code inspection

e Organizational aspects similar to code walk-through

e A reading technique aiming at error discovery

e Based on checklists; e.q.:
use of uninitialized variables;
jumps into loops;
Non-terminating loops;
array indexes out of bounds;

mismatch between actual / formal parameters
e \Writing a procedure that modifies a formal parameter

e Calling the procedure with a constant value as the actual
parameter;




Java Code Inspection Checklist
by: "Praktikum Software Engineering”
Java Code Inspection Checklist

. Variable and Constant Declaration Defects (VC)

. Are descriptive variable and constant names used in accord with naming conventions?
. Are there variables with confusingly similar names?
Is every variable properly initialized?
. Could any non-local variables be made local?
. Are there literal constants that should be named constants?
. Are there macros that should be constants?
. Are there variables that should be constants?

2. Function Definition Defects (FD)

8. Are descriptive function names used in accord with naming conventions?
9. Is every function parameter value checked before being used?
10. For every function: Does it return the correct value at every function return point?

3. Class Definition Defects (CD)

11. Does each class have an appropriate constructor and destructor?

12. For each member of every class: Could access to the member be further restricted?
13. Do any derived classes have common members that should be in the base class?
14. Can the class inheritance hierarchy be simplified?




4. Computation/Numeric Defects (CN)

15. Is overflow or undertflow possible during a computation?

16. For each expressions with more than one operator: Are the assumptions about order of evalu-
ation and precedence correct?

17. Are parentheses used to avoid ambiguity?

5. Comparison/Relational Defects (CR)

18. Are the comparison operators correct?
19. Is each boolean expression correct?
20. Are there improper and unnoticed side-effects of a comparison?

6. Control Flow Defects (CF)

21. For each loop: Is the best choice of looping constructs used?
22. Will all loops terminate?
23. When there are multiple exits from a loop, is each exit necessary and handled properly?

24, Does each switch statement have a default case?

25, Are missing switch case break statements correct and marked with a comment?
26. Is the nesting of loops and branches too deep, and 1s it correct?

27.Can any nested 1t statements be converted into a switch statement?

28. Are null bodied control structures correct and marked with braces or comments?
29, Does every function terminate?

30. Are goto statements avoided?




7. Input-Output Defects (I10)

31. Have all files been opened before use?

32. Are the attributes of the open statement consistent with the use of the file?
33. Have all files been closed after use?

34. Is butfered data flushed?

35. Are there spelling or grammatical errors in any text printed or displayed?
36. Are error conditions checked?

8. Module Interface Defects (MI)

37. Are the number, order, types, and values of parameters in every function call in agreement
with the called function’s declaration?
38. Do the values in units agree (e.g., inches versus yards)?

9. Comment Defects (CM) Important

39. Does every function, class, and file have an appropriate header comment?

40. Does every variable or constant declaration have a comment?

41. Is the underlying behavior of each function and class expressed in plain language?

42. Is the header comment for each function and class consistent with the behavior of the function
or class?

43. Do the comments and code agree?

44. Do the comments help in understanding the code?

45. Are there enough comments in the code

46. Are there too many comments in the code?

10. Packaging Defects (LP)

47. For each file: Does it contain only one class?
48. For each function: Is it no more than about 60 lines long?
49, For each class: Is no more than 2000 lines long (Sun Coding Standard) 7




