3
UML Walkthrough

This chapter presents a brief wallthrough of UML concepts and diagrams using a
simple example. The purpose of the chapter is to organize the high-level UML
concepts into a small set of views and diagrams that present the concepts visually.
[t shows how the various concepts are used to describe a system and how the views
fit together. This summary is not intended to be comprehensive; many concepts
are omitted. For more details, see the subsequent chapters that outline the UML
semantic views, as well as the detailed reference material in the encyclopedia chap-
ter.

The example used here is a theater box office that has computerized its opera-
tions. This is a contrived example, the purpose of which is to highlight various
UML constructs in a brief space. It is deliberately simplified and is not presented
in full detail. Presentation of a full model from an implemented system would nei-
ther fit in a small space nor highlight a sufficient range of constructs without ex-
cessive repetition,

LML Views

There is no sharp line between the various concepts and constructs in UML, but,
for convenience, we divide them into several views. A view is simply a subset of
UML modeling constructs that represents one aspect of a system. The division
into different views is somewhat arbitrary, but we hope it is intuitive. One or two
kinds of dingrams provide a visual notation for the concepts in each view.

At the top level, views can be divided into three areas: structural classification,
dynamic behavior, and model management.

Structural classification describes the things in the system and their relation-
ships to other things. Classifiers include classes, use cases, components, and nodes.
Classihers provide the basis on top of which dynamic behavior is built. Classifica-
tion views include the static view, use case view, and implementation view.

11

4

Part 2 - WML Concepts

Table 3-1: DML Views and Diagrams

Major Area View Diagrams Main Concepts
structural static view class diagram class, association, gen-
eralization, depen-
dency, realization,
interface
LS CARE View use case dia- u=e case, actor, associa-
Eram tion,extend, include,
use case generalizmtion
implementa- component dia- | component, interface,
tion wview gram dependency, realization
deployment deployment node, component,
view diagram dependency, location
dynamic state machine statechart dia- state, event, transition,

view

gram

action

activity view

activity diagram

state, activity, comple-
tion transition, fork,
jain

interaction
view

sequence dia-
gram

interaction, object,
message, activation

collaboration
diagram

collaboration, interac-
tion, collaboration role,
Message

model man-
ageme nt

model manage-
ment view

class diagram

package, subsystem,

model

extensibility

all

:'l”

constraint, stereo type,
tagged values

Dynamic behavior describes the behavior of a system over time. Behavior can
bedescribed as a series of changes to snapshots of the system drawn from the static
view. Dynamic behavior views include the state machine view, activity view, and

interaction view.

Model management describes the organization of the models themselves into
hierarchical units. The package is the generic organizational unit for models. Spe-

Chapter 3 « UMLWalkthrough 25

cial packages include models and subsystems. The model management view
crosses the other views and organizes them for development work and configura-
tion control.

UML also contains several constructs intended to provide a limited but useful
extensibility capability. These constructs include constraints, sterectypes, and
tagged values. These constructs are applicable to elements of all views.

Table 3-1 shows the UML views and the diagrams that display them, as well as
the main concepts relevant to each view. This table should not be taken as a rigid
set of rules but merely as a guide to normal usage, as mixing of views is permitted.

Static View

The static view models concepts in the application domain, as well as internal con-
cepts invented as part of the implementation of an application. This view is static
because it does not describe the time-dependent behavior of the system, which is
described in other views. The main constituents of the static view are classes and
their relationships: association, generalization, and various kinds of dependency,
such as realization and usage. A class is the description of a concept from the ap-
plication domain or the application solution. Classes are the center around which
the class view is organized; other elements are owned by arattached to classes. The
static view is displayed in class diagrams, so called because their main focus is the
description of classes.

Classes are drawn as rectangles. Lists of attributes and operations are shown in
separate compartments. The compartments can be suppressed when full detail is
not needed. A class may appear on several diagrams. [ts attributes and operations
are often suppressed on all but one diagram.

Relationships among classes are drawn as paths connecting class rectangles. The
different kinds of relationships are distinguished by line texture and by adorn-
ments on the paths or their ends.

Figure 3-1 shows a class diagram from the box office application. This diagram
contains part of a ticket-selling domain model. It shows several important classes,
such as Customer, Reservation, Ticket, and Performance. Customers may have
many reservations, but each reservation is made by one customer. Reservations are
of two kinds: subscription series and individual reservations. Bath reserve tickets:
in one case, only one ticket; in the other case, several tickets. Every ticket is part af
a subscription series or an individual reservation, but not both. Every perfar-
mance has many tickets available, each with a unique seat number. A performance
can be identified by a show, date, and time.

Classes can be described at various levels of precision and concreteness. In the
early stages of design, the model captures the more logical aspects of the problem.
In the later stages, the model also captures design decisions and implementation
details. Most of the views have a similar evalutionary quality.

26 Part 1 » UML Concapis

Class
Custamer

mame:sting o | ik ges
phone: String

add {name.phon -EI— Class-scope operation

1| owner
association e rokenames
purchased
Res ervation
date: Date
Show
cererdization name: String
| | 1 shiows
Subscription Inclividual /
Series Reservation o
-) multiplicities
series: Integer constraint o
0.1 brar} N
S 1.# | performances
Performance
- Ticket] date: Date
available:Boolean M time: TimeOfDay
sall (z:Custorner) y-alifier
exchange -]
gell [~ aperatiors

Figure 3-1. Class dingram

Lsa CaseView

The use case view models the functionality of the system as perceived by outside
users, called actors. A use case is a coherent unit of functionality expressed as a
transaction among actors and the system. The purpose of the use case view is to
list the actors and use cases and show which actors participate in each use case.
Figure 3-2 shows a use case diagram for the box office example. Actors include
the clerk, supervisor, and kiosk. The kiosk is another system that accepts orders
from a customer. The customer is not an actor in the box ofhce application be-
cause the customer is not directly connected to the application. Use cases include
buying tickets through the kiosk ar the clerk, buying subscriptions (only through
the clerk), and surveying total sales (at the request of the supervisor). Buying tick-

Chapter 3 + UMLWalkthrough a7

systemn

Box Cffice

actor

1
A e s

relaticrship |
i
, aincludes

make
charges

Cradit card service

—X

Supervisor

Kizsk

LI5E Ca5E

Figure 3-2. Use case diqgram

ets and buying subscriptions include a common fragment—that is, making
charges to the credit card service. (A complete description of a box office system
would involve a number of other use cases, such as exchanging tickets and check-
ing availability.)

Use cases can also be described at various levels of detail. They can be factored
and described in terms of other, simpler use cases. A use case is implemented as a
collaboration in the interaction view.

Intaraction View

The interaction view describes sequences of message exchanges among roles that
implement behavior of a system. A classifier role is the description of an object
that plays a particular part within an interaction, as distinguished from other ob-
jects of the same class. This view pravides a holistic view of behaviorin a system—
that is, it shows the flow of control across many objects. The interaction view is
displayed in two diagrams focused on different aspects: sequence diagrams and

collabaration diagrams.

8

Part 1 » UML Concapts

active clject
credit card

kicsk box office SEMIcE

request (count, performance)

show availability (seat-list)

==

select [seats)

= lifeline ¢active)

demand payment {cost)

insart card (card number)

MesEage
charge{card number, cost)

authorized

E_[int tickets (parformance, seats)

gect card

Figure 3-3. Sequence diagrom

Sequence diagram

Asequence diagram shows a set of messages arranged in time sequence. Each clas-
sifier role is shown as a lifeline—that is, a vertical line that represents the role over
time through the entire interaction. Messages are shown as arrows between life-
lines. A sequence diagram can show a scenarioc—that is, an individual history of a
transaction.

One use of a sequence diagram is to show the behavior sequence of a use case.
When the behavior is implemented, each message on a sequence diagram corre-
sponds to an operation on a class or an event trigger on a transition ina state ma-
chine.

Figure 3-3 shows a sequence diagram for the buy tickets use case. This use case
is initiated by the customer at the kiosk communicating with the box office. The
steps for the make charges use case are included within the sequence. which in-
volves communication with both the kicek and the credit card service. This se-
quence diagram is at an early stage of development and does not show the full

Chapter 3 - UMLWalkthrough 29

details of the user interface. For example, the exact form of the seat list and the
mechanism of specifying seats must still be determined, but the essential commu-
nication of the interaction has been specified by the use case.

Collaboration diagram

A collaboration models the objects and links that are meaningful within an inter-
action. The objects and links are meaningful only in the context provided by the
interaction. & classifier role describes an object and an association role describes a
link within a collaboration. A collaboration diagram shows the roles in the inter-
action as a geometric arrangement {Figure 3-4). The messages are shown as ar-
rows attached to the relationship lines connecting classifier roles. The sequence of
messages is indicated by sequence numbers prepended to message descriptions.
One use of a collaboration diagram is to show the implementation of an opera-
tion. The collaboration shows the parameters and local variables of the operation,

Eao

kicsk active chject

J‘. 1: request (count, performance)
} 4: offeriseat-list
{ 5: buy (ssats)

link
"r 8: confirm (seats, cost)
3:seat-list .= lock icount] —= passive chject
G:claim (seats) —==
7o unlock (seat-li
ticketSeller unlock | s —= db: FerformanceDB
docalkdb
transiert link
Mmessa3e
| 2: db = findDE [performance)
multickiect
. db
performancei vide : : PerformanceDB

Figure 3-4. Collaharation dingrom

1

Part 1 » UML Concapts

as well a5 more permanent associations. When the behavior is implemented. the
message sequencing corresponds to the nested calling structure and signal passing
of the program.

Figure -4 shows a collaboration diagram for the reserve tickets interaction at a
later stage of development. The collaboration shows the interaction among inter-
nal objects in the application to reserve tickets. The request arrivis from the kiosk
and is used to find the database for the particular performance from the set of all
performances. The pointer db that is returned to the ticket5eller object represents
2 local transient link to a performance database that is maintained during the in-
teraction and then discarded. The ticket seller requests a number of seats to the
performance; a selection of seats in various price ranges is found. tempomrily
locked, and returned to the kiosk for the customer’s selection. When the customer
makes a selection from the list of seats, the selected seats are claimed and the rest
are unlocked.

Both sequence diagrams and collaboration diagrams show interactions, but
they emphasize different aspects. A sequence diagram shows time sequence as a
geometric dimension, but the relationships among roles are implicit. A collabora-
tion diagram shows the relationships among roles geometrically and relates mes-
sages to the relationships, but time sequences are less clear because they are
implied by the sequence numbers. Each diagram should be used when its main as-
pect is the focus of attention.

State Machine View

A state machine models the possible life histories of an object of a class. A state
machine contains states connected by transitions. Each state models a period of
time during the life of an object during which it satisfies certain conditions. When
an event ococurs, it may cause the firing of a transition that takes the object to a
new state. When a transition fires, an action attached to the transition may be exe-
cuted. State machines are shown as statechart diagrams.

Figure 3-5 shows a statechart diagram for the history of a ticket to a perfor-
mance. The initial state of a ticket (shown by the black dot) is the Available state.
Before the season starts, seats for season subscribers are assigned. Individual tick-
ets purchased interactively are first locked while the customer makes a selection.
After that, they are either sold or unlocked if they are not chosen. If the customer
takes too long to make a selection, the transaction times out and the seat is re-
leased. Seats sold to season subscribers may be exchanged for other performances,
in which case they become available again.

State machines may be used to describe user interfaces, device controllers, and
other reactive subsystems. They may also be used to describe passive objects that
go through several qualitatively distinct phases during their lifetime, each of which
has its own special behavior.

Chapter 3 » UMLWalkthrough 3l

iritial assign to subscription
initial state

timed out

Available

transition

exchange

Figure 3-5. Stafechar? dingrom

Activity View
An activity graph is a variant of a state machine that shows the computational ac-
tivities involved in performing a calculation. An activity state represents an activ-
ity: @ worldlow step or the execution of an operation. An activity graph describes
both sequential and concurrent groups of activities. Activity graphs are shown on
activity diagrams.

Figure 3-6 shows an activity diagram for the box office. This diagram shows the
activities involved in mounting a show. (Don’t take this example too seriously if
you have theater experience!) Arrows show sequential dependencies—for exam-
ple, shows must be picked before they are scheduled. Heavy bars show forks or
joins of control. For example, after the show is scheduled, the theater can begin to
publicize it, buy scripts, hire artists, build sets, design lighting, and make cos-
tumes, all concurrently. Before rehearsal can begin, however, the scripts must be
ordered and the artist must be hired.

This example shows an activity diagram the purpose of which is to model the
real-world workflows of a human organization. Such business modeling is a major
purpose of activity diagrams, but activity diagrams can also be used for modeling
software activities. An activity diagram is helpful in understanding the high-level
execution behavior of a system. without getting imvohved in the internal details of
message passing required by a collaboration diagram.

The input and output parameters of an action can be shown using flow rela-
tionships connecting the action and an object flow state.

Part 2 + WML Concepts

pick shiow)

schedule sh-:w) actwity

fork

|: publicize show

design
lighting

buy scripts hire ma ke
and music artists costumes

sall tickets)

L

|: rehisarse

completion
frarsiticn

dress rehearsal)

j=in

(=)

Figure 3-&. Activity dirgram

Physical Views

The previous views model the concepts in the application from a logical view-
point. The physical views model the implementation structure of the application
itself, such as its organization into components and its deployment onto run-time
nodes. These views provide an opportunity to map classes onto implementation

Chapter 3 + UMLWalkthrough 13

components and nodes. There are two physical views: the implementation view
and the deployment view.

The implementation view models the components in a system—that is, the
software units from which the application is constructed—as well as the depen-
dencies among components so that the impact of a proposed change can be as-
sessed. It also models the assignment of classes and other model elements to
compon ents.

The implementation view is displayed on component diagrams. Figure 3-7
shows a component diagram for the box office system. There are three user

actor
CreditCardAgenc
o dency
- -
-
CreditCardCharges | comporert sdatabases
TicketDB
spplie
rterface
charge A purchase status
cliert ‘-.t - - L
b
TicketSeller gr-:uupE-ales “‘hk
M Interf
subxrlptlnnSales%y“ ﬁdmduaﬁale& Anagerinteriace
S !
"
.f .-“ T - T . B
g -~ "~ ™ Supervisor

A r L Ta ™ .
% Kioskinterface % Clerklnterfacs
b f
|]

| f

Customer Clark

Figure 3-7. Component diggream

14

Part 2 + WML Concepts

interfaces: one each for customers using a kiosk, clerks using the on-line reserva-
tion system, and supervisors making queries about ticket sales. There is a ticket
seller component that sequentializes requests from both kiosks and clerks; a com-
ponent that processes credit card charges; and the database containing the ticket
information. The component diagram shows the kinds of components in the sys-
tem; a particular configuration of the application may have more than one copy of
a component.

A small circle with a name is an interface—a coherent set of services. A solid line
from a component to an interface indicates that the component provides the ser-

actor
CreditCardAgency
k3
- .
.,
" . .

Manager

. LY
comporert I:l__,_|::| CreditCardCharges % Managerinterface

= —
il -
. . adatabases =
% TicketSzller TickstDR]
|t‘ TicketServer ||ill
1 1 , 1 1
. . communication liciby
dependenc, IIII aseciation * | :;TJrIrIIF-jIL 1ty
. \ .
Kicslk 1| # # ﬁl'-. SalesTerminal

% Customerdnterface % Clerklnterface

7 i

r node !
! /
! !

Customer Clerk

Figure 3-8. Deployment diggrem (descripeor level)

Chapter 3 + UMLWalkthrough 15

vices listed in the interface. A dashed arrow from a component to an interface in-
dicates that the component requires the services provided by the interface. For
example, subscription sales and group sales are both provided by the ticket seller
component; subscription sales are accessible from both kiosks and clerks, but
group sales are only accessible from a clerk.

The deployment view represents the arrangement of mun-time component in-
stances on node instances. A node is a run-time resource, such as a computer, de-
vice, or memary. This view permits the consequen ces of distribution and resource
allocation to be assessed.

The deployment view is displayed on deployment diagrams. Figure 3-8 shows a
descriptor-level deployment diagram for the box office system. This diagram
shows the kinds of nodes in the system and the kinds of components they hold. A&
node is shown as a cube symbaol.

Figure 3-9 shows an instance-level deployment diagram for the box office sys-
tem. The diagram shows the individual nodes and their links in a particular ver-
sion of the system. The information in this model is consistent with the
descriptor-level information in Figure 3-8,

Main St. kiosk: Kiosk oz instance

commurication link n-/:r:le rame ;df bvpe
F—

headquarters: TicketServer

River St. biox office: SalesTerminal telesales office: SalesTerminal

Valley Mall kiosk: Kiosk

Figure 3-9. Deployment diagrem instance fevel)

36 Part 2 « WML Concepts

Model ManagementView

The model management view models the organization of the model itself. A
model comprises a set of packages that hold model elements, such as classes, state
machines, and use cases. Packages may contain other packages: therefore, 1 model
designates a root package that indirectly contains all the contents of the model.
Packages are units for manipulating the contents of a model, as well as units for

access contral and configuration control. Every model element is cowned by one
package or one other element.

asubsystems
Flanning sbrEystem
] Package —
Publicity Scheduling
.-"‘- I Il,
1
e ':l
o dependency |
-
w50 bsystems o H
Box Office o I
v :
P !
| .:# L
| 1
Customer |
Records Trwod TicketSales | - -- -] Tickst Records
\
1
f
.
ssubsystame 1
Dperations 'l
h
— — " —
Purchasing f----- s BAccounting e ----{ Payroll

Figure 3-10. Packages

Chapter 3 + UMLWalkthrough aT

A model is a complete description of a systern at a given precision from one
viewpoint. There may be several models of a system from various viewpoints—for
example, an analysis model as well as a design model. A model is shown as a spe-
cial kind af package.

A subsystem is anather special package. It represents a portion of a system, with
a crisp interface that can be implemented as a distinct component.

Model management information is usually shown on class diagrams.

Figure 3-10 shows the breakdown of the entire theater system into packages and
their dependency relationships. The box othce subsystem includes the previous
examples in this chapter; the full system also includes theater operations and plan-
ning subsystems. Each subsystem consists of several packages.

Extensibility Constructs

UML includes three main extensibility constructs: constraints, sterectypes, and
tagged values, A constraint is a textual statement of a semantic relationship ex-
pressed in some formal language or in natural language. A stereotypeis a new kind
of model element devised by the modeler and based on an existing kind of model
element. A tagged value is a named piece of information attached to any model el -
ement.

These constructs permit many kinds of extensions to UML without requiring
changes to the basic UML metamodel itself. They may be used to create tailored
versions of the UML for an application area.

Shonw

{names for one season must be unique} =——— constraint

narme: 5tring

wlatabases w=— sherectype P
TicketDR sterectype icon

TicketDB

[1]

Scheduling

[author=FrankMartin, | tazged values
due=Dec. 31,1999}]

Figure 3-11. Exensitility constructs

g

Part 2 « UML Concepts

Figure 2-11 shows examples of constraints, stereotypes, and tagged values, The
constraint on class Show ensures that the names of shows are unique. Figure 3-1
shows an xor constraint on two associations; an object can have a link from one of
them at a time. Constraints are useful for making statements that can be expressed
in a text language but which are not directly supported by UML constructs.

The sterectype on component Ticket DB indicates that the component is a data-
base, which permits the interfaces supported by the component to be omitted as
they are the interfaces supported by all databases. Modelers can add new stereo-
types to represent special elements. A set of implied constraints, tagged values, or
code generation properties can be attached to a stereotype. A modeler can define
an icon for a given sterectype name as a visual aid, as shown in the diagram. The
textual form may always be used, however.

The tagged values on package 5cheduling show that Frank Martin is responsible
for finishing it before the end of the millennium. Any arbitrary piece of infarma-
tion can be attached to a model element as a tagged value under a name chosen by
the modeler. Text values are especially useful for project management information
and for code generation parameters. Most tagged values would be stored as pop-
up information within an editing tool and would not usually be displayed on
printed pictures.

Connections Among Yiews

The various views coexist within a single model and their elements have many
connections, some of which are shown in Table 3-2. This table is not meant to be
complete, but it shows some of the major relationships among elements from dif-
ferent views.

Chapter 3 - UMLWalkthrough

Table 3-2: Some Relationships Amowg Elements in Different Views

19

Element

Element

Relationship

class

state machine

ownership

opeTation

interaction

realization

collaboration

realization

LISE Case
LIsE case interaction instance sample scenario
component instance nede instance location

acticn operation call

action signal send

activity operation call

message action invocation
package class ownership

role class classifi cation

