
Structural Design of a Software System using
Statechart and Activity-chart in Statemate Tool

Kamran Sartipi

Assistant Professor
Dept. of Computing and Software

McMaster University
Hamilton, Ontario
Canada L8S 4K1

Abstract

This report introduces Statemate as a CASE tool for developing large reac-
tive systems. Reactive systems perform different actions in response to the
input signals and usually receive a large number of inputs. This characteristic
complicates the design of the behavior control parts of the system. Statemate
provides statecharts as means for designing behavior parts and activity-charts
for designing functional parts of a system. These tools assist the designer
to separate the important design concerns with respect to the system func-
tionality and behavior. This report starts with a brief introduction to the
Statemate’s language and continues with description of the design techniques
used for developing a large reactive system with Statemate. The design of a
fast-food restaurant system is used as an example of a large system to illus-
trate the various design aspects such as: different design styles, hierarchical
structure, data and control flow, user-interface, managing parallel processes,
and instantiation. The last part of the report evaluates the Statemate tool
against a number of criteria.

1 Introduction

Statemate, a CASE tool for designing of large Reactive Systems, is a product of the i-logix

incorporation. The term Reactive Systems was first used by Dr. Lavi at Israeli Aircraft and
later used in Statemate description by Dr. David Harel. Reactive systems receive a large
number of external and internal signals of the form Event or Condition, hence they are some-
times called event driven systems. The system reacts to the signals and performs different
tasks accordingly. The examples of such systems include: avionic systems, telephone and
communication controller, robots, etc.

1

Statemate provides facilities for Structured Analysis and Design, and is a collection of differ-
ent tools that supports a complete design life-cycle from requirement-analysis to prototyping,
designing, and code-generation. It benefits from different graphical editors for design task
which aid the designer to develop the system using its functional and behavioral models.
Statemate provides the following facilities in one package:

• Graphical Editors are design tools for specifying the system in Activity-Charts, Stat-
echarts, and Module-Charts.

• Project Management provides an environment for a group of system designers to
work in a team for developing a system. It manages the authority to access the shared
data base (Data-Bank) among the design team-members.

• Version control keeps track of the changes of each module in the system and generates
different versions for each.

• Check Model checks the data-flow and control-flow diagrams for consistency and
completeness.

• Data Dictionary defines the whole elements of the system and searches through
them.

• Data-Base Query offers a full spectrum of query models for querying the attributes
of the elements in the system.

• Simulation simulates the system functionality at different levels of abstraction i.e.
prototype and design.

• User Interface Design uses a dedicated Panel editor to define the required displays
and buttons for input/output tasks.

• Code Generation produces the source code in C or Ada from the designed system.

• Document Generation.

In this report we are interested in modeling a reactive system using three aspects of the State-
mate language: Activity-charts, Statecharts, and Module-charts. A multi-station restaurant
system with several communicating units is used as our design example. Statemate has
facilities for designing a system in different levels of abstractions which assists in designing a
system in top-down or bottom-up styles. A precise system specification is required to ensure
the production of a correct system. This specification is created from the initial system
requirement proposed by the customer and further investigations of the designer. Provided
that a detailed specification is available, the design can be started from bottom. The design
of our restaurant system is started by implementing the basic functionalities of various units
of the system i.e. order-taking, assembling, food-preparation, and inventory. The activity-
charts are means for defining the system functionalities. Defining the data-structures and
input/output characteristics of the system are the next design efforts. The behavior of the

2

system in response to the incoming or internal signals is demonstrated by statecharts. Stat-
echarts react to the signals and control the functionality of the system manifested by the
activity-charts. This is a typical behavior of reactive systems.

Statemate contains the required mechanisms for gathering the small pieces of a design func-
tionality in a group to make a higher level of abstraction. The reverse design style i.e.
top-down, is also feasible. The system is first designed in its highest level of abstraction.
Then, using functional decomposition of the modules, lower layers of the design are devel-
oped.

In complex systems such as this restaurant system, several concurrent and communicating
modules exist. Typical problems in such a systems include: inter-process communication
(IPC) and process synchronization. To illustrate the IPC between different charts of a de-
sign, a simple example of producer and consumer is provided. Synchronization is another
issue of the concurrent charts which must be resolved. A synchronization technique which
is employed in our restaurant system is presented. Reusability of the existing modules is
a common practice. The concept of generic-chart and instantiation in Statemate allows
the use of multiple instances of a chart. A simple example describes this feature. Most of
the units in the restaurant example have several stations which use the instantiation concept.

This report is structured as follows: The next section is allocated to a brief description of
the Statemate’s language which consists of statecharts and activity-charts. In section ??,
various design aspects such as: system specification, system architecture, data and control
flows, data-structure, and user interface are described. Section 3 of the report describes
the design peculiarities of a concurrent reactive system with emphasis on the two design
styles: Top-Down and Bottom-Up. In section 3, the concurrency related issues such as
synchronization and interprocess communication are discussed. In section ?? we evaluate
the Statemate tool against a number of criteria which are devised for evaluation of graphical
design tools. Finally section 4 provides a conclusion to the report.

2 Language of Statemate

The language of Statemate consists of three aspects:

Activity-charts: These charts manifest the functional decomposition of the system in a
hierarchy of charts, each at a different level of abstraction. These charts define the
functionality of the system and are considered Data-Flow diagrams. Their tasks include
transportation and manipulation of the system variables. They are concerned with
what tasks the system must execute.

Statecharts: Statecharts present the behavior of the system and control its functionality.
Statecharts manage the behavior of the system by sequencing the order of execution of
different functions of the system. These charts are considered Control-Flow diagrams.

3

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � � �
� � � �
� � � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �� � � �

� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	

� � �
� � �
� � � � � �

� � �

� �
� �
� �

� �
� �
� �

Name:

Description:

MODULE

Name:

Description:

ACTIVITY

ACTIVITY-CHARTS

MODULE-CHARTS

STATECHARTS

Name:

Description:

STATE

Figure 1: The Language of the Statemate consists of three graphical concepts: Statecharts,
Activity-charts, and Module-charts.

They illustrate the concepts of causality, concurrency and synchronization in the sys-
tem. In general they are concerned with when a particular task should be executed.
Statecharts and activity-charts demonstrate the Conceptual Model of the system.

Module-charts: These charts define the physical connections among the various modules
in the system and provides the structural view of the system. It answers the question
of how different modules of the system are interconnected. The three views of the
system-model and their relationships are illustrated in Figure 1. Different attributes
of each chart in the system are kept in data-dictionary forms which are shown in the
Figure.

In the following sections the important features of the Statemate semantics are presented.
The semantics of the Statemate language is described in its conceptual model: statecharts
and activity-charts.

4

2.1 Language of the Statecharts

Statecharts to some extent are state-transition-diagrams with increased capabilities, such as,
multi-level states, decomposition of states, concurrent states, and synchronization. Below,
some important concepts are described.

2.1.1 Elements of a statechart

The elements of a statechart consist of:

State: A statechart consists of several states which are represented by rounded boxes. States
show the distinct configurations of the system. Three kinds of states exist: or-states
have sub-states (hierarchical), and-states have concurrent components (parallel execu-
tion), and basic-states have no sub-states. States are used for several purposes:

• A state can produce time synchronization by creating unit-delays in the system.
In this form we add a state between two states.

• A state can be used to start one or more activities in an activity-chart. After
assigning this task to a state (using data dictionary), its name is suffixed with
the sign “>”.

• A state can be a reactive-state, which has some static-reactions associated to it.
Static reactions are reactions of the system to an event within a particular state,

The syntax of the reaction is:

trigger/action;;
trigger/action;;

It is a list whose components are separated by two semi-colons. Each one has a
syntax of a transition label. Static-reactions are defined using a data dictionary.
The name of the reactive-state is then followed by a “>” sign. This feature is
demonstrated in section 3.2.1

• A state can represent an off-page chart. In this case, its name is prefixed by the
sign “@” and is called box-is-chart. (see section 2.1.6)

• A state can represent an instance of a generic-chart, in which case its name has
special format (see section 3.3).

Transition: Transition is the movement from one state to another, and is represented by
an arrow. The label of the transition has the following format:

Event[Condition]/Action

Events are edge sensitive elements of the system. They are effective only at the time-
unit when they are triggered, and will disappear at the next time-unit. Various events
are generated as a result of the following actions:

5

• Pressing of a button in the panel, which is bound to an event.

• Entering or Exiting of a state.

• Activating or Stopping of an activity.

• Changing of data or contents of an array.

• Time-out after that an event is occurred.

Conditions are level sensitive elements of the system. As long as the condition is true
the associated transition is allowed. If the condition and event are both used in the
label of an arrow, the transition is allowed only when the condition is true and the event
is triggered. The value of a condition becomes true by one of the following actions:

• Pressing of a button in a panel, which is bound to a condition.

• Being in a state.

• When an activity is active.

Actions manipulate some elements in the system after which a transition is performed.
They are summarized below:

• Trigger an Event or change a Condition.

• Assignment of an expression to a variable.

• Starting or Stopping of an Activity.

• If, then, else construct.

• While and For loops.

Step: Step is a transition of the system from one configuration to another and involves the
execution of one or more transitions. If no transitions can be executed, the system is
said to be in a stable configuration. Step is executed in zero time. The values associ-
ated with transition actions are changed only at the end of the step and the generated
events may be sensed only at the step that immediately follows the current one.

In the next part, some of the most important concepts of the statecharts are described.
The Figures are the snapshots of the charts when their operations are simulated with
the simulator tool. The thicker arrows represent the currently active transitions when
simulating the chart and help us to pinpoint the important features of the examples.

2.1.2 Statechart Timing

A transition may occur on a time-out basis. This type of transition has the label of the form
tm(e,n) in which “e” is any event of the above described form, and n is the number of system
time-units. This transition will occur n time-units after the occurrence of event “e”. Figure
2 illustrates the use of delayed transition. When the state idle becomes active the event

6

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

tm(en(IDLE),2)

DATE_TIME_S>

IDLE

Figure 2: Timing in the Statechart. Delayed transition occurs after n time-units.

en(idle) is triggered (state idle is entered). After 2 time-units the transition will be triggered
and the system moves to state date-time-s. At the next step the idle state is active again.
In simulation of a chart, steps are performed at zero-time, but the time-out transitions are
dependent on time not on steps. Therefore, to see the effects of time-based transitions, the
simulation should be performed in auto-run mode, not single-step, to let time proceed.

2.1.3 Statechart Hierarchy

Hierarchy is the decomposition of a state into more basic states. It reduces the number of
transitions and clarifies the system behavior. The statechart in Figure 3 has the following
interpretation: When a transition is made to the outer edge of a state which is further
decomposed, the sub-state containing the default entrance is entered (thick arrows in Figure).
When a transitions from the outer edge of a state, which is further decomposed, is triggered,
all states inside that state becomes inactive. e.g. if the state B is active and condition C1 is
false, transition with label [not C1] will occur and B becomes inactive. When a transition
leaves the edge of a sub-state, the system must be in that sub-state for the transition to
occur. e.g. in order to trigger transition “E2”, state A must be active. When a transition is
made to the edge of a sub-state, the state is entered whether or not that state is the default
entry state (not shown in Figure).

2.1.4 Statechart Concurrency

The notion of being in more than one state at any given time is handled through the prin-
ciple of concurrency. The statechart in Figure 4 illustrates the and-line construct (dotted

7

Figure 3: Hierarchy in the Statechart. State S2 is decomposed into states A and B.

Figure 4: Concurrency in the Statechart. Each state can be converted to an and state with
many concurrent elements.

8

Figure 5: Synchronization in the Statechart. Several states can be synchronized using the
joint transition (thick arrow).

line), which denotes concurrency. State S2 is an and-state. The and-state may have many
concurrent states. When an and-state is entered, all of its concurrent sub-states are entered
(thick arrows in Figure). This is true whether the and-state is entered by a transition to its
outer edge or by a transition to any of its descendants. When an and-state is exited all of its
concurrent sub-states are exited. This is true whether the and-state is exited by a transition
from its outer edge or by a transition from any of its descendants.

2.1.5 Statechart Synchronization

The combination of hierarchy and concurrency simplifies the modeling of large, complex
system. Concurrent processes (or individual statecharts) rarely exist independently. It is
therefore, necessary to synchronize their interaction. A joint transition is one which combines
two or more transitions with the same label (Figure 5). This transition will only occur when
all states that share the joint transition are entered and the conditions for transition are met.
This is shown by the thick arrow. The resultant transition can generate an event which is
used for synchronizing of concurrent processes in the scope of the statechart or can be used
to synchronize different statecharts.

9

Figure 6: Putting all details of the hierarchical states in a statechart, makes the chart messy
and difficult to understand.

2.1.6 Statechart Declutter & Merge

As the complexity of the design increases, the charts become messy and difficult to under-
stand. The decluttering mechanism permits the detail of any box to be defined in a separate
off-page chart. Its reference box is named with the prefix “@”. Diagram connectors are used
to mark the entry and exit points of the transitions in the defined chart. In order to illustrate
the significance of decluttering and its effect in separating the different levels of hierarchies,
we declutter the chart in Figure 6. Three states S1, C, and D are decluttered, and the result
is shown in Figure 7. As is seen, the name of each decluttered state is prefixed by the sign
(@) which means the state is the representation of a chart and is called box-is-chart. For
each decluttered state a separate chart will be generated and the link between the new gen-
erated chart and the decluttered state is established. Logical Diving to a decluttered state
is a concept that causes the system to display the associated chart so that you can see the
details of the state.

Merge, the opposite concept of Declutter, causes the separate charts to be combined into one
chart.

10

Figure 7: Decluttering in the Statechart, allows the details of the boxes to be defined in the
off-page charts.

2.2 Language of the Activity-charts

An Activity-chart is a data-flow diagram with elements (syntaxes) such as: activities (edged
boxes), information flow (solid arrow), control flow (dashed arrow), data repository (box
with dashed sides). A typical activity-chart is shown in Figure 8. The relation of the state-
charts and activity-charts are through a special activity called control-activity (box @system
in Figure). This activity is in fact another statechart which controls the activation of its
sibling activities.

Statemate has three kinds of activities which differ in the way that they terminate. The
activation of all activities are controlled by activation of its parent activity or its sibling
control activity.

Procedure-like activity: This activity performs a set of actions upon its start and then
stops. It is active for one simulation step.

Reactive-controlled activity: This activity has a control-activity. It can be active for
several steps, but only stops when its control-activity terminates.

Reactive-self activity: This activity is similar to the above activity, but it can also ter-
minate by itself.

Other important concepts in activity-charts are as follows:

11

Figure 8: Activity-chart in Statemate. Edged-boxes are activities and rounded-box is the
control-activity.

Mini-Specification “Mini-Spec”: The activity mini-spec is a textual behavioral descrip-
tion which consists of a list of reaction/actions or actions. The mini-specs are defined
through a data-dictionary form and become active when the associated activity is made
active, and stopped when the associated activity is stopped. When a mini-spec is de-
fined for an activity, the sign “>” will be appeared after the name of the activity. This
concept is used in section ??.

Context-Variables: Actions in transitions or mini-specs are performed simultaneously, i.e
in transition label /A;B;C, actions A, B, and C occur at the same time. Context
variables are variables whose value can change within a step. These variables have a
dollar sign ”$” before their names. Context variables permit us to have For or While
loops within a single simulation step. For example the only way to perform a loop in
a mini-spec is as follow:

For $x in 1 to 5

loop

xarray($x):=$x;

end loop;

This loop sets the 5 elements of the xarray() to the integers 1 to 5.

12

Box-is-chart: Activity-charts like statecharts benefit from the concept decluttering, and
hence complex activities can be decluttered to produce off-page charts. The decluttered
activity is called box-is-chart and its name is the name of the activity which is prefixed
by the sign “@”. This concept is also used in section ??. It is immediately observed
that this method of hierarchical representation of the activities hides the unnecessary
details of the design at a certain level of abstraction.

Scoping of elements: Statemate tool uses a versatile data-dictionary which acts as a data
base and contains the information from all types of elements in the system. Data-items,
events, and conditions should be explicitly defined in the data dictionary, where they
are bound to a statechart or activity-chart. This chart is the scope of the element, and
the element can be shared among all activities or states of that chart and its offspring.
This scoping permits the designer to define variables to be accessed by different groups
of charts, some (global) variables accessible by all charts, and some (local) variables
accessible to smaller group of charts.

2.3 User Interface Design

Designing of an interface to a software system has always been one of the essential design
efforts. Creating a mouse driven, menu driven, windowing system interface is desired in
any system. Existence of modern Window Systems such as X11 and versatile Window Man-
agers such as OSF/Motif facilitate the development of sophisticated man-machine interfaces.
These facilities provide a series of default features for the design tool which eases the design
task. Still the main task of the design tool is to employ these available mechanisms and pro-
vide some higher level means for system developer to easily design a man-machine interface.

The variety of the interface design widgets define the richness of the syntax of the user-
interface designer. The semantics of the interface, on the other hand, express interactions
between the design widgets in the interface and design elements in the system. For example,
semantics defines how a particular display in the user-interface screen can communicate with
a running process in the system. Various methods of triggering an event from the keyboard
of the system is another example.

The Statemate integrated tool, has a rather sophisticated built-in user interface design tool
called the Panel Graphic Editor. This panel-editor uses the X11 window system and Motif
or Open Window window manager to provide flexible window manipulations such as: ex-
panding, shrinking, and moving the window, utilizing a spectrum of colors and fonts. Using
the Network features of the X11 window system such as Remote Display, enables Statemate
tool to set up the user-interface of the system in any host computer or X-Terminal across the
Network, independent of the location of the running program. This allows to easily design
multi-screen systems.
In Figure 9 the Panel Graphic Editor of Statemate is shown. A part of the order taking panel
is also shown. The design of the user-interface (Panel) in Statemate is easily performed using

13

Figure 9: Panel Graphic-Editor of Statemate. Using a variety of design widgets, sophisticated
user-interface panels can be easily implemented.

14

a variety of panel elements which are defined below:

• Push Button: Is mainly used for triggering an event to the system or changing the
value of a condition.

• Radio Button (vertical and horizontal): Is mainly used for changing the values of
the conditions.

• Lamp (Indicator with label L): Shows the change of a condition or occurrence of an
event in the system.

• Text Display (square with label DISP): Is used for inputing (or outputting) of text
to (from) the system.

• Measuring Display (circles or slider): Is used for indicating the values of the vari-
ables.

• Primitive Elements: These are primitive shapes such as circle, square, arch, line,
and polynomial which can be gathered in groups to constitute composite figures. By
controlling the different attributes of these groups of primitives such as: Visibility,
movement, color, rotation, and scale, the resulting figure looks like an animation.

The combination of the panel visual-elements presents quite a wide range of design options
for the user-interfaces. It should be mentioned that the panel editor has also some restric-
tions. For example we cannot overlap a display region over the push-button region of the
screen.

Bindings: Each element of the panel should be bound to one of the variables (Data-item,
Event, or Condition) in the system.
For example the push-buttons are usually used to trigger an event in the system. The
event is bound to the label of an arrow in the state-chart so it causes the system to make a
transition and change its state. Radio-buttons are usually bound to conditions, so pressing
a button causes a condition to become “true”. Conditions like the events are used as a label
of an arrow in state-chart and this condition will also make a state transition. Text displays
are always bound to the string data-items and are used for inputting or outputting of text.
Writing a text string to the corresponding data-item will cause the text to be shown on the
display. Typing in the region of the text-display causes it to be directly reflected in the
data-item. The versatility and ease of use of the panel editor, greatly reduced the design
effort for the user-interface of the system.

3 Designing of a Reactive System

A typical design using the Statemate tool can be started from any of the two conceptually
different aspects of the system, its functionality or its behavior. If the system has massive
data processing, the activity-chart is a good point to start the design, and if the system is
mainly event-driven, the statechart is the better choice.

15

3.1 Top-Down / Bottom-Up Design

The box-is-chart feature of the Statemate permits developing a design in different styles, i.e.
top-down, bottom-up, or mixture of both. This feature allows further decomposition of a
high level design into its lower level details, as well as integration of individual design parts,
developed by different designers, into a higher level chart. In the latter chart, each design
part is represented as a chart-is-box. The project-manager feature of Statemate permits
a controlled access to the charts, hence provides a safe and isolated environment for each
member of the design group to develop his/her design. The version controller of Statemate
generates a new copy of each chart of the system upon its modification.

Designing a large reactive system requires precise following of the design life-cycle principles
of software engineering. A brief introduction to the different design life-cycles is presented
in the appendix of this report. Statemate permits a spiral style of designing a system. Using
the hierarchical structure of the charts, the designer is capable of creating a prototype model
of the system from its specification. The simulator tool is used to simulate the functionality
of the prototype to detect possible errors or any inconformity with the system requirements.
Potential errors can be detected early in the design process, preventing the high cost of
error detection when they are revealed at the later stages of the system development. The
requirement traceability tool of the Statemate can also be used for this.

3.2 Concurrency in a Reactive-System

Major problems in a system consisting of a number of concurrent processes include the
synchronization of the processes’ operations and their inter-process communication through
shared memory (IPC).

3.2.1 Synchronization

By synchronization we mean each process should wait until one or more processes reach a
certain point in their execution. A large reactive system is exposed to a number of internal
and external signals, which in most cases are random in nature and can occur simultane-
ously. To clear up this situation, a kind of distributed control mechanism is needed to react
properly to the arriving signals. An example of this situation is random button pressing in
the order-taker station. Each button triggers a signal (event). A normal sequence of button
pressing for taking an order consists of, selecting menu items, followed by their quantities.
This sequence ends with inputting of the amount of cash to the system. There are a great
number of combinations of signals which are possible and only a small number of them are
allowed.

How can the overall control-mechanism be implemented? Centralized-control mechanisms
cannot be applied since managing the different threads of control make it a very complicated
procedure. A distributed-control mechanism is appropriate. The overall control sequence

16

is divided into pieces that are separately assigned to each process to control itself. Manag-
ing this distributed-control mechanism in concurrent programming languages is done using
a binary semaphore. The P and V operations are used to synchronize the activation of
parallel-processes. The P operations in front of each process invocation control the activa-
tion of it and the V operations at the end of the process signal the activation of the next
scheduled processes. By initialization of the semaphores, the first scheduled process(es) will
be assigned. The activation sequence is easily made in this manner. This simple mechanism
can also be used in statecharts. A condition variable can be assigned to each concurrent
chart to control its operation. The activation of each chart (process) in this reactive system
depends on two parameters. First, the condition-variable assigned to the chart must be true,
and second, the signal which is monitored by this chart is triggered. All of the statecharts
in the order-taker unit are controlled in this fashion. The chart recall-order-cntl is chosen to
illustrate this method. This chart is shown in Figure 10.

E9

S9>

SET_NEW_ORD_S>

RECALL_ORDER_S>

OSCRN_UPDATE_S>

E_RECALL[RECALL_FLAG]

RECALL_ORDER_CNTL

Figure 10: Statechart recall-order-cntl. S9 is a reactive-state and is responsible for synchro-
nization of the chart operation with other sibling charts.

When the system is working, all of the concurrent statecharts in the order-taker unit are
active and all are in their standby states (the blank state in Figure 10), waiting for external
signals to be triggered. All condition variables of the charts are initialized to false other than
one chart (e.g., item-selection chart). In this situation neither of the control buttons on this
unit works and only item-select buttons are enabled. In fact pressing each button triggers
an event, but the associated condition-variable prevents the operation of the corresponding
chart. When the item-select chart finishes its operation, it is responsible for assigning the
next allowed operation(s). This is performed by manipulation of the condition-variables of
the other charts in a reactive-state. In the case of our example, when the condition recall-

17

flag is true, and the event e-recall is triggered, The chart operates and performs its duties.
It then enters to state S9 and specifies which signals are allowed afterward (changes their
conditions to true), and which signals are inhibited (changes their conditions to false). The
contents of state S9 is shown below.

/RECALL-FLAG:=false;;

/SELRECALL-FLAG:=true;;

/ORDER-FLAG:=true;;

/EXITRECALL-F:=true;;

/ITMSEL-FLAG:=false;;

/E9;

3.2.2 Inter-Process Communication

Interprocess communication (IPC) is another important feature of concurrent systems. In
concurrent textual languages there are some constructs which allow private access to shared
data-structures which is essential for communication in concurrent environments. The key
point in these constructs is the kernel support for atomic operations which manipulate some
protected variables. For example, changing the value of the semaphore-variable S in P and
V operations is done atomically. In Statemate, the transitions and procedural-activities are
executed in one simulation step. In a typical execution of a concurrent system, many of such
activities exist which are executed at the same step. As we experienced in the design of this
project, Statemate atomically executes all of these activities, hence permits private access
to a shared data.

In our design, there is an order-buffer that is shared between the chart assembly-director,
which puts one ready-order in it, and assembly-stations which race to get the order to as-
semble it. This is a typical relation of the producer and consumers with a single buffer. In
order to inspect the solution to this problem, a chart producer-and-consumer is used which
consists of one producer and three consumers. This chart is shown in Figure 11.

Two condition-variables buffer-full (buf-f) and data-used (d-used) are employed to ensure
that the data is loaded into the buffer, only when the consumer has removed the previous
data, and the data will be used only when the producer has put new data in the buffer. State
put-data-in-buf in the producer state P, and state get-data in consumer states C1 to C3 are
critical-sections which should be privately accessed. The mechanism is very simple. Producer
is allowed to start the communication by putting data in the buffer, the consumers can then
get the data from the buffer. In the worst case when some or all of the consumers are racing
for accessing the data, a simple mechanism provides mutual-exclusion. In transition from
the state wait to the state test-winner, all the racing consumers simultaneously put their ID
in a data-variable (winner). In the state winner-test they all test the winner to see whose
ID is written in it. The consumer whose ID is in winner, trigger the event WINx (x can be
1, 2 , or 3) and proceeds. The other consumers trigger the event LOSEx and return to wait
state. In Figure 11 consumer two has won and will get the data from the buffer. The main

18

/tr!(BUF_F);
fs!(D_USED);

/fs!(BUF_F);
tr!(D_USED);

PORCESS

C2
WAIT

GET_DATA

/tr!(D_USED)

WIN2

PORCESS

C3
WAIT

GET_DATA

/tr!(D_USED)

WIN3

[BUF_F]/
fs!(BUF_F);
WINNER:=2;

[BUF_F]/
fs!(BUF_F);
WINNER:=3;

PRODUCE_NEXT_DATA

PUT_DATA_IN_BUF

WAIT

[D_USED]

P

PRODUCER_AND_CONSUMER

PORCESS

C1
WAIT

GET_DATA

/tr!(D_USED)

WIN1

[BUF_F]/
fs!(BUF_F);
WINNER:=1;

LOSE1

LOSE3 LOSE2

TEST_WINNER>

TEST_WINNER> TEST_WINNER>

Figure 11: This chart illustrates the typical example of the producer and consumer. State
put-data-in-buf in the producer chart, and states get-data in the consumer charts are critical
sections.

19

point in this solution is the parallel and atomic execution of the actions in the transition
with label:

[BUF-F]/fs!(BUF-F); WINNER:=x;

When all of the consumers are in the wait state and the buffer is full, in the next simulation
step all can proceed and make a transition to the next state. In this transition the condition
variable buf-f becomes false, and the data-variable winner is set, and all these 3 assign-
ments are done in zero time (theoretically). Condition-variable buf-f controls whether the
consumers enter their critical sections, and d-used controls whether the producer enters its
critical section. These conditions are similar to the P operation in a binary semaphore. The
processes, waiting in a state to enter their critical sections, are not blocked by the system
hence they consume the CPU while waiting for an event. This is known as busy waiting.

Other forms of process communications such as bounded-buffer are also feasible with the
above solution. In the restaurant system the order-taking stations provide orders and put
them in a FIFO queue, and the assembly-director chart is responsible for removing them
from the queue and assembling them. Their access to the shared buffer can be resolved
using the above mechanism.

3.3 Instantiation

In the example producer-and-consumer presented above, there are three consumer charts
C1, C2, and C3 which are the same except for the name of the events and the ID number
of the charts. This method of directly copying the same chart for several times has some
drawbacks. The number of the charts in the system increases. New charts and their asso-
ciated variables should be defined in data-dictionary, and other time consuming redundant
works. The concept of generic-chart and the use of its instances instead of the real charts is
a solution to this problem which is offered by the Statemate tool.

Statecharts and activity-charts can be defined as a generic-chart. This concept provides the
ability to instantiate different charts which encourages the designer to reuse the available
charts. The idea is to create a generic-chart which performs a desired task and use it in
other places without copying it. The chart is defined completely independently of the other
charts of the system. When we wish to use one or more instances of that chart, we define
an activity or state using a special naming pattern.

Name of Instance < Name of generic chart

As a result, the activity or state becomes an instance of the generic chart. Formal parame-
ters at the generic-chart side and Actual Parameters at the instance side are the means of
communicating the values of the variables between the generic chart and its instances. These
parameters should be bound together using the data-dictionary forms of the instances. This
method of instantiation available in Statemate has some disadvantages which prevents the
design of a flexible software system. For example:

20

\tr!(BUF_FULL);
fs!(DATA_USED);

/fs!(BUF_FULL);
tr!(DATA_USED);

PUT_DATA_IN_BUFFER

PRODUCE_NEXT_DATA

PRODUCER

[DATA_USED]

WAIT

Figure 12: The producer off-page chart is waiting to enter its critical section.

WAIT

LOSER

WINNER

/tr!(DATA_USED);

CONSUMER

TEST_WINNER_ID>

GET_DATA

PROCESS_DATA

/[BUF_FULL];
fs!(BUF_FULL);
WINNER_ID:=CONSUMER_ID;

Figure 13: One of the instances of the generic-chart consumer which is entering its critical-
section.

• The system does not support parameterized instantiation. This means each instance
must be graphically defined, hence preventing a variable number of instances in the
system.

• To create each instance, all of the actual-parameters should be explicitly declared in
the system. There is no way of automatic creation of instances as in the fork() function
in the language C.

To better illustrate the concept of generic-chart, we convert the example of producer-and-
consumer chart into three separate charts as follow:

1. Chart producer, which is a regular chart (Figure 12).

2. Chart consumer, which is a generic chart and many instances of it can be defined in
the system (Figure 13).

21

CONSUMER_2<CONSUMER

CONSUMER_3<CONSUMER

CONSUMER_1<CONSUMER

@PRODUCER

PRODUCER_CONSUMER

Figure 14: The parent chart producer-consumer provides concurrent execution of the pro-
ducer chart and 3 instances of the consumer chart.

3. Chart producer-consumer, which is a parallel-state (AND state) and consists of the
box producer, and three instances of the generic-chart consumer (Figure 14).

When the chart producer-consumer is activated, generates three instances of the generic-
chart consumer which are completely similar. These instances communicate with each other
and with producer via their actual parameters which are: data-used, buf-full, winner-id, and
consumerx-id. In binding of these parameters to the formal-parameters of generic-charts, the
name of the parameters are the same in both sides. For example buf-full (actual-parameter) in
each instance-chart is bound to the buf-full (formal-parameter) of the generic-chart. The only
difference which causes the instances to be distinguished form each other is the parameter
consumerx-id. For example: consumer1-id is the actual parameter for instance one. This
parameter is defined as a constant in the data-dictionary and has the value 1. It is bound
to the consumer-id of the generic-chart consumer. The same method is used for the other
two instances. Therefore when three instances are generated, the variable consumer-id is
1 for instance number one, and is 2 for instance number two, and so on. In this way the
instances of a generic-chart can be separated and assigned to different tasks. This method of
separating different instances of a generic-chart is similar to the way that the child-processes
are distinguished in the fork() function call of the language C. Each child-process returns
its process-ID to the parent-process, providing a means for the parent to assign different
jobs to the child-processes. In our restaurant system we extensively used the generic-chart
concept in allocating several stations to order-taking, assembling, and preparation units of
the restaurant.

22

4 Conclusion

Statemate provides an environment for developing large reactive systems. It consists of
different design tools such as: graphical editors for designing functional and behavioral
characteristics of the system, simulation, code generation, a project manager, etc. This
report introduced the semantics of the statecharts and activity-charts with examples for
each. The step by step design procedures of a large reactive system (a fast-food restaurant)
was described. Top-down and bottom-up design styles using the concepts of decluttering
and off-page charts were explained. Functional decomposition of the system and defining
the basic functions in mini-specs of the activities is the basis for designing activity-charts.
In most designs activity-charts are the first step. Data structures and input/output design
are the next steps. Designing of the data-structures is crucial since Statemate 5.0 has many
shortcomings in this regard. User-interface design in Statemate is easily performed using the
dedicated panel-editor. Various bindings of variables to the charts or to the panel elements
are done in the data dictionary. Defining the external signals to the system and separate
control sequences for small parts of the system function is the key to the design of the
statecharts. Lower level charts of the system can be easily integrated into parent charts
to provide a higher level of abstraction in system design. Techniques for synchronization
and communication among concurrent charts were described and the instantiation of the
generic-charts along with their advantages and disadvantages were discussed. At the end,
using a number of criteria, the Statemate tool is evaluated and its merit as an ideal system
development environment is indicated.

23

