
A QoS-Aware Decision Model for Web Service Development:

Server-side Data Services or Client-side Task Services

Mehran Najafi, Kamran Sartipi and Norman Archer
McMaster University

Hamilton, ON, Canada
{najafm, sartipi, archer}@mcmaster.ca

Abstract

An enterprise system needs to provide differ-
ent types of web services to model actual ser-
vices in the corresponding business domain.
We have proposed to categorize web services
into data and task services. While a data ser-
vice processes client data at the server-side, a
task service employs a service representative, as
a generic client-side software agent, to process
the client data locally at the client-side. Task
services maintain client privacy by locally pro-
cessing client sensitive data and reducing the
required network bandwidth. However, they
limit the computational power of web services
to the client platform. This paper proposes a
decision model, which uses the analytic hierar-
chy process method to help service developers
decide on the best type of business service for
a specific functionality. The decision model in-
cludes evaluation functions for relevant quality
of service (QoS) parameters. Finally, we use a
case study to discuss alternative services and
the decision making process.

1 Introduction

Service-Oriented Architecture (SOA) [1] is a
high-level and technology-independent concept
that provides architectural blueprints for enter-
prise systems. Moreover, web services can pro-
vide web-accessible programs and devices that
have been widely promoted in cloud environ-

Copyright c© 2011 Mehran Najafi, Dr. Kamran
Sartipi, and Dr.Norman Archer. Permission to copy is
hereby granted provided the original copyright notice is
reproduced in copies made.

ments as platforms for the smart Internet [7].
The smart Internet (also called the Personal
Web) is a candidate for the next Internet gen-
eration, which is shifting towards a more user-
centric and task-oriented network.

SOA based architectures focus on dividing
the enterprise application layer, where its com-
ponents (as services) have a direct relationship
with the business functionality of the enter-
prise. Data Services, representing typical web
services, process client data completely at the
server (provider) side. However, server-side
processing of web services requires transfer-
ring client data to the service providers, which
may cause data privacy violations, security
breaches, or network traffic overloads. More-
over, in the real-world business domain, an en-
terprise organization usually sends an agent
or other personnel (e.g., a representative, in-
staller, maintainer, or trainer) to the client site
to deliver services locally. To address this is-
sue, we have proposed Task Services [13] which
are web services with the capability of pro-
cessing client data at the client side using a
generic software agent called the Service Rep-
resentative. Then, a task service performs the
required server-side processing and defines a
task to customize the generic service represen-
tative to perform the client-side processing at
the client site. Figure 1 shows the extended
SOA model that supports task services.

Server-side data services and client-side task
services are complementary, and each has ad-
vantages and disadvantages that must be con-
sidered in their selection. Client-side task ser-
vice applications include, but are not limited
to, the following cases.



• Context-aware services: improving client
privacy by processing confidential client
data (e.g., personal health data and finan-
cial information) at the client side.

• Real time and event-triggered services: im-
proving service response time by locally
processing client data.

• Client data intensive services: reduc-
ing the network traffic by processing
large client data volumes (e.g., live video
streaming) at the client-side.

• Client-side service composition: task ser-
vices can be composed at the client site.
A server-side composition imposes extra
client data transmission loads between the
service client and an external service or-
chestrator which could increase the re-
sponse time, network traffic, and security
vulnerability.

Alternatively, a server-side data service rep-
resents a better option in the following appli-
cations.

• Server data intensive services: data ser-
vices have direct access to the server’s
databases which is essential in data-
intensive applications.

• Compute intensive services: service repre-
sentatives provide limited computational
power which may result in increasing the
service response time.

• Intelligent services: client-side processing
of a task service may require some enter-
prise assets (e.g., sensitive data or knowl-
edge) while revealing them to the client
side violates enterprise privacy.

There is not always a clear boundary be-
tween service types and a web service can be
categorized in more than one category. There-
fore, service developers have to decide whether
a web service should be designed and devel-
oped as a data service or as a task service.
In this paper, we propose a decision model to
guide service developers when deciding about
the proper type of web service. Based on the
decision model, each service is modeled by a
business process and the service developer is

Figure 1: Proposed extended SOA model,
where ”Service Representative” processes client
data based on an assigned ”Task” from the ser-
vice provider.

given an objective function to compare the data
service and task service versions of the web ser-
vice. The definition of the objective function is
based on quality of service (QoS) parameters.

The organization of this paper is as follows.
Data and task services are introduced in Sec-
tion 2. The proposed decision model is dis-
cussed in Section 3. A case study of the deci-
sion making process is presented in Section 4.
Section 5 discusses work that is related to our
approach. Finally, conclusions and future work
are discussed in Section 6.

2 Business Services

An enterprise system needs to provide both
server-side and client-side web services to
model actual services in the business domain.
We have proposed to categorize web services
into data and task services. Figure 2 shows
a comparison between data services and task
services.

2.1 Data Service

This represents a typical web service in the cur-
rent SOA model where the service processes the
client’s data and resources completely at the
server site. Consequently, a data service in-
cludes only server-side processing and returns
a service response in the form of data that
will be consumed directly by the client. In
other words, a data service receives remote ser-
vice parameters and returns remote service re-
sponses, with reference to the service client.



Figure 2: Comparison of Data and Task Ser-
vices. ”Remote” and ”Local” are defined from
the viewpoint of the service client.

2.2 Task Service

In [13] and [10], we introduced the concept of
Task Services as web services with the capabil-
ity of processing the client’s data and resources
partially or completely at the client site. A
task service performs the required server-side
processing and then it defines a task includ-
ing the client-side processing to be performed
by the service representative at the client site.
The service representative is a generic client-
side software agent with a built-in process en-
gine that can be employed by different ser-
vice providers to perform different task ser-
vices. The service representative requires both
task logic and task data to perform client-side
processing that can be provided from different
sources. We propose to model a task with the
following components.

Task =< Model, Knowledge, Data >

• Task Model specifies the control flow and
data flow among sub-tasks using an ab-
stract Business Process Model (BPM).

• Task Knowledge provides the required
logic for each sub-task. This includes
both descriptive knowledge such as Busi-
ness Rules (BR) and procedural knowledge
such as Business Actions (BA).

• Task Data provides the server-side data
that are required during the task execu-
tion, stored in Business Objects (BO).

Task components are messages that can be
transmitted efficiently over the network. The
service representative uses the received task

Figure 3: Financial adviser task message and
the corresponding client data.

components and performs the client-side pro-
cessing of the task service on the local service
parameters to provide local service responses
for the service client. The following example il-
lustrates the different applications of data and
task services.

- A typical financial adviser data service asks
for the client’s financial information in order to
provide personalized advice.

- A financial adviser task service generates a
set of general financial advice, e.g., stock buy
and sell advice (server-side processing), accord-
ing to the client’s preferences (remote param-
eters). Moreover, it defines a task for the ser-
vice representative (client-side processing) in-
dicating the required procedure (task model)
and guidelines (task knowledge) to customize
the general financial advice (task data) based
on the client’s personal information (local pa-
rameters). Related task components are shown



Figure 4: Proposed decision model to help service developers to determine the proper service type
(data or task service) for a web service.

in Figure 3. A general stock buy (or sell) ad-
vice recommends that the client has a minimum
(or maximum) percentage of specific shares in
his/her portfolio. According to the task model,
for general buy advice which targets stock ”b”,
the service representative first checks to deter-
mine whether the client has enough shares of
”b” (V alidbuy?). If this advice is valid, the
service representative calculates the number of
shares of ”b” which the client should purchase
and prints the resulting customized buy advice
(Print Buy Advice). Similarly, the service
representative generates customized sell advice.

3 Decision Model

The Analytic Hierarchy Process (AHP) [21]
is a structured technique for dealing with
complex decisions. This technique helps
decision makers find a decision that best suits
their goal and their understanding of the
problem. Users of the AHP first decompose
their decision problem into a hierarchy of more
easily comprehended sub-problems, each of
which can be analyzed independently.

Figure 4 represents the proposed decision
model (AHP) containing the decision goal (ser-
vice type), the alternatives for reaching it (data
or task service), and the criteria (QoS param-
eters) for evaluating the alternatives. Prior to
applying the decision model, the service devel-
oper needs to obtain information about the ser-
vice clients such as client computing capabili-
ties (e.g., CPU speed) and the client’s network
bandwidth BW (Figure 5). Since the devel-
oped web service will be used by different ser-
vice clients, the service developer must decide
about the characteristics of an average service
client.

3.1 Alternatives Services

A web service executes one or more business
processes of its enterprise (i.e., the service
provider), where each business process applies
business rules and performs business actions on
internal (server-side) and external (client-side)
business objects in a defined order. Therefore,
a web service can be modeled by a collection of
business components, including business pro-
cesses, rules, actions, and objects. Moreover,
a web service can be modeled as either a data



Figure 5: Required network characteristics in
the decision making process.

service or a task service. While a data service
applies the business components at the server-
side, the task service sends the business com-
ponents to the client-side to be applied by the
service representative.

To apply the decision model, the service de-
veloper first needs to design and develop equiv-
alent versions of the web service in the form of
data services and task services. A data ser-
vice includes an integrated server-side business
process (called a service process) and a task
service includes a server-side process (called a
task builder process) and a client-side process
(called a task process). Figure 6 represents the
business processes which are required in the de-
cision making process.

A data web service DWS is modeled by a
function that receives remote service parame-
ters xr

DWS from the service client and returns
remote service responses yr

DWS .

DWS : Xr
DWS −→ Y r

DWS
1

Similar to a data service, a task web service
TWS is modeled by a function which it receives
remote service parameters xr

TWS from the ser-
vice client and returns the generated task mes-
sage taskTWS to the service representative SR.
Then the service representative processes the
local service parameters xl

TWS to generate the
local service responses yl

TWS for the service
client.

TWS : Xr
TWS −→ TaskTWS

SR : TaskTWS ×X l
TWS −→ Y l

TWS

1In defining a function (e.g., DWS), we use the sets
of input ”parameters” (e.g., XDWS) and output ”re-
sponses” (e.g., YDWS) to represent the types of the
function’s input and output.

Consequently, in order to design the service
business processes, the service developer needs
to identify the local and remote service param-
eters and responses for each alternative service.

3.2 QoS Parameters

The QoS requirements for web services refer to
the quality aspect of a web service. Data and
task services process client data at the server
and client platforms, respectively, which affects
some of the QoS parameters. Consequently, we
divide QoS parameters into two categories as
follows.

• Platform independent QoS: includes relia-
bility, robustness, exception handling, and
interoperability. These parameters depend
on the service logic and are offered with
the same quality by a data or task version
of a web service. It also includes service se-
curity because similar authentication and
authorization approaches can be used in
data and task services.

• Platform dependent QoS: includes perfor-
mance (execution time, latency, response
time, and throughput), scalability, capac-
ity, availability, and privacy (client and
provider privacy). A web service can be
used in different client applications where
each application requires specific QoS re-
quirements. Consequently, this category
also includes application-specific require-
ments.

3.3 Decision Criteria

For the proposed decision model, we use
platform-dependent QoS parameters as decision
criteria, which are evaluated differently for data
and task services. In this section, we discuss
how each decision criteria can be evaluated.

3.3.1 Execution Time

Service Execution Time (ET) is the time spent
by a system executing the processes of a web
service. The execution time depends on four
factors: CPU speed, memory size and access
time, and process complexity.



Figure 6: Data and task service alternatives for a web service.

We define ET process
platform(x) as the time spent

by the platform to execute the process which
takes input parameters x. The service devel-
oper can obtain execution time values using
software profiling techniques available as Ap-
plication Programming Interfaces (APIs).

The following equation represents the execu-
tion time evaluation function. While the data
service process is performed at the server-side,
the task service process is divided into two pro-
cesses: task builder and task which are per-
formed at the server-side and client-side, re-
spectively.

CET =


Data Service :
ET serviceserver (xrDWS)

Task Service :

ET task builderserver (xrTWS) + ET taskclient(x
l
TWS)

3.3.2 Latency

Service Latency (L) is defined as the time span
from the time a service client issues a request for
service to the time it receives a response message.
Both data and task services receive remote service
parameters xr within the request messages. How-
ever, the resulting response messages include re-
mote service responses yr and task messages for
data and task services, respectively.

Network tools such as ping tests can be used to
measure latency. Moreover, the service latency can
be estimated using network characteristics. The
following evaluation function, which is a simplified
version of the equation given by B.Liu [2], provides
an estimate of the service latency. Size(x) returns

the size of data x and BWClient represents the net-
work bandwidth of the service client expressed in
kilobytes/second.

CL =


Data Service :
Size(xrDWS)+Size(yrDWS)

BWClient

Task Service :
Size(xrTWS)+Size(taskTWS)

BWClient

Data services require transferring all client data
volumes from the client to the server. On the other
hand, task services process client data locally, im-
plying that the service message size is independent
of the volume of client data. Therefore, the task re-
quest message is short while the response message
containing the task definition could be large.

3.3.3 Response Time

Service Response Time (RT) is the time between a
service request sent and the corresponding service
response received, which is defined as follows.

CRT = CET + CL

3.3.4 Throughput

Throughput is the number of web service re-
quests served in a given time interval (e.g., 1 sec).
Throughput depends on the service execution time
at the provider site [4]. In the case of task services,
service clients have their own service representa-
tives, which can process client data in parallel, and
therefore the throughput is improved significantly.
The following equation, which was inspired by the
model given by Ofuji [24], estimates the service
throughput for data and task services.



A data service has one second to complete ser-
vice requests. However, service representatives
asks for ET taskClient to perform client-side process
of a task service. During this time, the server
is free to serve other services (i.e., the server
and service representatives are working in paral-
lel). Consequently, all service requests processed in
[0, 1 sec −ET taskClient] by the server, will be processed
by the service representatives before 1 second time
period is expired.

CT =



Data Service :
1(sec)

ETserviceserver (xr
DWS

)

Task Service :
1(sec)−ET task

client
(xlTWS)

ET task builderserver (xr
TWS

)

3.3.5 Scalability

Scalability represents the capability of increasing
the computing capacity of the server to process
more client requests per second. The computing
capacity can be increased by adding more com-
puting units and/or assigning more CPU shares to
the web service processes. In this case, CL repre-
sents the latency associated with each individual
service client, whereas the computation power of
the server is shared among different service clients.
The following equation represents the gain in re-
sponse time comes from increasing the server com-
puting capacity by αS factor (αS ≥ 1).

CS =



Data Service :
CRT

ETserviceserver (xr
DWS

)

αS
+CL

Task Service :
CRT

ETtask builderserver (xr
TWS

)

αS
+ET task

client
(xl
TWS

)+CL

3.3.6 Capacity

Capacity is the limiting number of simultane-
ous service requests which can be served by the
provider with guaranteed performance (e.g., ser-
vice response time). The capacity for the service
response time depends on two factors: the server’s
network bandwidth, and the server-side execution
time of the web service [23]. CRT represents the
service response time where there is only one ser-
vice request. In case of multiple service requests,
the acceptable service response time is defined by
αRT . Servers can simultaneously transfer messages
and process service requests. Therefore, αRT

CRT
rep-

resents a lower limit for the service capacity (in

the case of a data service). The maximum limit is
the number of service messages which can be trans-
ferred through the server channel in αRT . There-
fore, the service capacity is estimated by the aver-
age of the minimum and maximum values. For a
task service, the service capacity can be estimated
similarly by considering the service process distri-
bution between server and client platforms.

CC =



Data Service :

Avg(αRT
CRT

, αRT×BWserver
Size(xr

DWS
)+Size(yr

DWS
)
)

Task Service :

Avg(
αRT−ET taskclient

(xlTWS)

CL+ET task builderserver (xr
TWS

)
,

αRT×BWserver
Size(xr

TWS
)+Size(taskTWS)

)

3.3.7 Availability

The service availability is the probability that the
service is up and operating. A web service can be
temporarily shut down for several reasons such as
service maintenance. However, a task service can
take advantage of its client-side service representa-
tive during the service shut down period. For this
purpose, a task definition needs to include an ac-
tivation time to start operating when the server is
not available. The service availability for a data
service is simply defined by the following equation
[20].

CA = totaltime−idletime
totaltime

On the other hand, the service availability for a
task service is not straightforward. During an idle
time, the task service can not be invoked by service
clients. But service clients who have invoked the
service during the service activation period have ac-
cess to the service through the service representa-
tive. However, this service availability is limited to
task services where the service representative does
not require any task updates in order to provide
proper service responses. Moreover, in this case,
an estimation of service client distribution over the
activation and idle time is required.

The following equation represents the task ser-
vice availability under different conditions, where
C#T represents the number of service clients dur-
ing the evaluation period (e.g., a day). Similarly,
C#I represents the number of service clients dur-
ing the service idle time.

CA =


If task updates required
total time−idle time

total time

Else
total time−idle time

total time
+ idle time

total time
× C#T−C#I

C#T



3.3.8 Client Privacy

We define client privacy as the ability to keep the
client’s personal and sensitive information private
and local. The service client may need to send
its personal information to the service provider as
service parameters. However, task services divide
the service parameters into two categories: local
and remote, where local service parameters which
include client sensitive information are processed
locally by the service representative.

To compare client privacy provided by data and
task services, the service developer first needs to
identify the client sensitive information among the
local and remote service parameters, represented
by the set Sclient. A degree of sensitivity is
assigned to each member of this set, represented
by a positive number Sensitivityx for each
x ε Sclient. The following function gives a measure
of how client privacy is violated by different type
of services, where an increase in value represents
more client privacy violations.

SWS
client = {x |x ε Xr

WS ∧ x is sensitive}
CCPV =

∑
xεSWS

client

Sensitivityx

3.3.9 Provider Privacy

Similarly to client privacy, data and task ser-
vices represent different behaviours regarding ser-
vice provider privacy. A data service performs all
the processes at the server side. However, required
task knowledge and task data for the service rep-
resentative can include enterprise assets and re-
sources. Revealing them to the client-side may vi-
olate enterprise privacy. To prevent this privacy
vulnerability, a service provider can use one of the
following techniques.

• Enterprise knowledge can be divided into lo-
cally applied (at the provider side) by the
service or externally applied (at the client
side) by service representatives. Therefore,
the critical knowledge (e.g., market analysis)
remains at the service provider, while non-
critical knowledge (e.g., advice customization
guidelines) can be sent to the service repre-
sentative.

• The service client receives service responses
from the service representative. The client
does not have access to the knowledge trans-
ferred between the service provider and its
representative. Encryption techniques can be
used for data transmissions between a service
provider and representative to improve enter-
prise privacy.

Figure 7: Exponential (left), linear (middle),
and step (right) normalization functions for
QoS parameters.

The following function CPPV evaluates the
provider’s privacy violation where Sprovider in-
cludes sensitive task knowledge and task data. The
encryption factor αEnc is in [0,1], representing the
efficiency of the encryption technique used.

STWS
provider = {x |x ε TaskTWS ∧ x is sensitive}

CPPV =


Data Service
0

Task Service∑
xεSTWS

provider

Sensitivityx × (1− αEnc)

3.3.10 Application Requirements

A web service can be invoked by different client
applications where each application has specific re-
quirements. While previous QoS metrics describe
general features of a web service, this metric is
based on client-side service applications. Although
it is not possible for the service developers to con-
sider all different types of client applications that
would invoke this service, the service developer can
categorize main applications.

For example, in a dynamic environment, where
client data are changing frequently, a web service
must be invoked whenever the service parameters
are changed. In this case, a task service is more
desirable, because the service representative can
take care of changes in the local service parame-
ters. Consequently, task service invocations will
be decreased dramatically, improving performance
metrics. For this application, the corresponding
comparison measure is CSC which represents the
number of service calls in a given time. The follow-
ing equation is the evaluation function for this met-
ric, where βrWS represents the frequency of updates
in the values of Xr

WS in a given time (1 minute).

CSC = βrWS



3.4 Objective Function

QoS parameter values are not comparable and
they must be transformed, or normalized, be-
fore the comparison takes place. A normaliza-
tion function is defined for each QoS parame-
ter in order to map values from its domain in
its co-domain [0,1], preserving the original in-
put data distribution. Platform-dependent QoS
parameters (decision factor) are categorized into
two main groups: desirable factors (including
CT , CS , CC , and CA) and undesirable factors (in-
cluding CET , CL, CRT , CCPV , and CPPV ). A de-
sirable (undesirable) decision factor is maximized
(minimized) by the objective function. Therefore,
a normalization function for a desirable (undesir-
able) decision factor must assign greater numbers
to greater (smaller) QoS values.

A service developer can define a variety of cus-
tomized normalization functions. For example,
given QoS values for a data service qdws and a task
service qtws, a simple linear normalization function
can be defined as follow.

Nq(x) =


q is desirable

x
max(qdws,qtws)

q is undesirable
1− x

max(qdws,qtws)

Alternatively, normalization functions which
utilize upper and lower bounds can be defined. Fig-
ure 7 represents three examples of such functions.
In addition to normalization functions, the service
developer needs to define a numerical weight wq for
each QoS parameter q in the decision model.

The following equation represents the ob-
jective function derived from the decision
model, represented in Figure 4. This func-
tion is a weighted sum of the QoS param-
eters where µ is the set of decision factors,
µ = {ET,L,RT, T, S, C,A,CPV, PPV,App}, and∑

xεµ
wx = 1.

Ctotal =
∑

xεµ
wx ×Nx(Cx)

Using the objective function, the service devel-
oper obtains Ctotal for both data service and task
service alternatives and chooses the one with the
higher value as the better candidate for providing
the web service.

Finally, the objective function is likely to gener-
ate different results for different service input pa-
rameters. Therefore, in order to make an accurate
decision, the service developer needs to categorize
the service inputs based on their size and complex-
ity and then calculate the objective function for

Figure 9: Face detection algorithm applied to a
sample image. (Left) original image, (middle)
skin-detected image, and (right) face-detected
image.

each category. The final decision should be made
by considering different categories.

4 Case Study

We use a case study of a face detection web service
to demonstrate the different phases of the proposed
decision making process.

4.1 Case Study Specification

A face detection service is a primary need in many
fields, including face recognition, video surveil-
lance, and human motion detection. A face detec-
tor takes an image and determines its regions that
contain face(s). Several face detection approaches
have been proposed in the literature, including ap-
proaches based on face spaces, neural networks,
and template matching [17].

We adapted a two-step template matching algo-
rithm for use in this case study. This algorithm
includes two steps, where each step is developed
by a process as follows.

1. Skin Detector: finds skin regions using explicit
boundary rules on color values [14]. This step
generates a binary image where all skin and
non-skin pixels are assigned Black and White,
respectively.

2. Face Detector: extracts face regions from
skin regions using face templates, as follows:
(i) enhances the binary image to eliminate
noise; (ii) segments the enhanced image into
connected regions; (iii) selects the potential
face regions based on their size and width-to-
height ratio; (iv) creates a feature vector for
each selected region by detecting its edges; (v)
compares feature vectors with the given face
templates to find face regions; and (vi) shows
face regions in rectangles.

Figure 9 represents an example that applies
these two steps to a sample image.



Figure 8: Alternative services include a composite data service (option 1), a composite task service
(option 2), and two hybrid services (options 3 and 4).

4.2 Alternative Services

As discussed in Section 2, each business process
can be provided as either a data service or a task
service. Given two business processes, the alterna-
tives include four services, represented in Figure 8.
The alternative services include a composite data
service (option 1), a composite task service (option
2), and two hybrid services (options 3 and 4).

While the composite data service was imple-
mented by AJAX-RPC APIs, we implemented the
composite task service and hybrid services by a de-
veloped prototype named Extended SOA Version
1.1 (ESOA v1.1) [13]. This prototype is based on
J2EE 1.5 technologies and an Apache Tomcat 6.0
application server. Moreover, it uses Drools [15]
rule flow engine as the service representative pro-
cess engine. Finally, the ESOA v1.1 is divided into
two Java packages: TaskService package used by
service providers to develop task services, and Ser-
viceRepresentative package used by service clients
to install the generic service representative and in-
voke different task services.

4.3 Decision Model

In this section, we obtain the value of QoS parame-
ters for each alternative service and then we apply
the objective function to obtain the best service
type. To perform the evaluation, we used a server
platform with a (2.66 GHZ) 2 Core Intel CPU con-
nected to the network via a 1 Mbyte/Sec link. On
the other side, we consider an average service client
with a (1.8 GHZ) single Core Intel CPU connected
to the network via a 128 KByte/Sec link.

Our test suite consisted of 10 randomly selected
images where all images were in color with vari-
ous visual qualities, details and different sizes (80
Kbytes - 2 Mbytes). This test set includes images
with and without facial shapes.

1. Execution Time: depends on the size and
complexity of the input image as well as the pro-
cessing speed of the computing unit. Figure 10
represents CET for our test samples. Based on
the applied algorithm, the skin detector execution
time depends on the size of the input image. How-
ever, the face detector execution time depends on



the number of detected skin regions. Consequently,
the execution time is not always incremental. The
composite data service (option 1) performs all the
processes at the server-side and provides the fastest
results. For example, given a 360 Kbyte input im-
age, the execution time for the skin detector pro-
cess is 33 milliseconds at the server-side and 49
milliseconds at the client-side. Similarly, the ex-
ecution time for the face detector process which
takes the same image is 84 and 164 milliseconds
at the server-side and client-side, respectively. Fi-
nally, we calculated the average execution times to
be used in the other QoS evaluations, represented
by CET .

Figure 10: Service Execution Time for the can-
didate services. C#1

ET = 202, C#2
ET = 357,

C#3
ET = 234, and C#4

ET = 326.

2.Latency: depends on both the size of trans-
ferred messages and the client network bandwidth.
Figure 11 represents CL for the test set where
the composite task service (option 2) outperforms
other options since the service messages only in-
clude the task definitions, not original or modified
images. The third option, which requires trans-
ferring the (black-white) skin image and the re-
sulting face regions, shows an acceptable latency.
For example, given the 360 Kbyte input image, the
skin image and face regions are 23 Kbytes, and 3
Kbytes, respectively. Finally, the size of task mes-
sages is independent of the size of input images.
TaskSkin Detector is 2Kbytes and TaskFace Detector
is 52 Kbytes, including face patterns.

3.Response Time: depends on both the exe-
cution time and latency. However, it is needed as it
is usually one of the key QoS metrics asked by ser-
vice clients. Moreover, based on Figures 10 and 11,
it turns out that good execution time performance

Figure 11: Service Latency for the candidate
services. C#1

L = 6747, C#2
L = 78, C#3

L = 769,

and C#4
L = 7485.

does not necessarily mean good performance in re-
sponse time, and vice versa. Figure 12 compares
CRT among candidate services using the test set.
Based on these results, the second and third ser-
vices perform better than the first and fourth ser-
vices since large client data volume affects service
latency more than execution time.

Figure 12: Service Response Time for the can-
didate services. C#1

RT = 6931, C#2
RT = 435,

C#3
RT = 1013, and C#4

RT = 7791.

4.Throughput: is improved by performing pro-
cesses in parallel and at the client-side. The com-
posite task service (option 2) performs all the pro-
cesses at the client-side and therefore it provides
the best throughput. Using the average service ex-
ecution time, the throughput for the candidate ser-
vices are as follows: C#1

RT = 5, C#2
RT = 36, C#3

RT = 7,

and C#4
RT = 12.



5.Scalability: is improved where the server per-
forms some parts of the service processing and the
execution time is comparable with the latency. In
this case, we evaluated the gain obtained by in-
creasing the server processing capability to process
the client’s requests twice as fast (αS = 2). The
results are as follows: C#1

S = 1.5%, C#2
S = 2%,

C#3
S = 9%, and C#4

S = 0.1%.

6.Capacity: is increased by task services as
they require less network bandwidth and server
computing share. Assuming that the minimum ac-
ceptable response time for this service (αRT ) is 8
seconds. The resulting capacities are as follows:
C#1
C = 1.15, C#2

C = 82, C#3
C = 8.6, and C#4

C = 1.1.

7.Availability: is similar for all the services as
we assume that the service does not need mainte-
nance and is functioning 24/7. Therefore, C#1

A =

1, C#2
A = 1, C#3

A = 1, and C#4
A = 1.

8. Client Privacy: is violated by data services
as the service client needs to transfer sensitive in-
formation (input images) as service parameters.

Sclient = {input image}

We apply a sensitivity measure which as-
signs a number in [0,1] to sensitive data
where higher value represents more sensitivity,
Sensitivityinput image = 0.5. Then, the corre-
sponding privacy violation costs for the candidate
services are as follows: C#1

CPV = 0.5, C#2
CPV = 0,

C#3
CPV = 0, and C#4

CPV = 0.5.

9. Provider Privacy: is violated by task ser-
vices since the service provider needs to transfer
sensitive information, which includes facial pat-
terns as well as skin detection (SD) and face de-
tection (FD) algorithms, required by the service
representative to perform the tasks.

Sprovider = {patterns, SD, FD}

Using the same sensitivity scale as client pri-
vacy, we assigned Sensitivitypattern = 0.8,
SensitivitySD = 0.3, and SensitivityFD = 0.5.
Moreover, we assume αEncryption = 0.6. Then,
the corresponding privacy violation costs for the
candidate services are as follows: C#1

PPV = 0,

C#2
PPV = 0.64, C#3

PPV = 0.12, and C#4
PPV = 0.52.

10. Application Requirements: are evalu-
ated for three different applications as follows.

Figure 13: Three normalization functions used
in the face detection case study.

1. Still-Image Face Recognition. This applica-
tion requires only one web service invoca-
tion. C#1

SC1 = 1, C#2
SC1 = 1, C#3

SC1 = 1, and

C#4
SC1 = 1.

2. Video Surveillance. This application requires
invoking the web service every five seconds.
The composite task service (option 2) pro-
cesses all the images at the client-side. Con-
sequently, it requires only one web service in-
vocation. C#1

SC2 = 12, C#2
SC2 = 1, C#3

SC2 = 12,

and C#4
SC2 = 12.

3. Human Motion Detection: This application
requires invoking the web service every sec-
ond. Similarly to the video surveillance ap-
plication, the composite task service is the
only option which does not require any up-
dates. C#1

SC3 = 60, C#2
SC3 = 1, C#3

SC3 = 60, and

C#4
SC3 = 60.

The obtained QoS parameters became compa-
rable after normalization. Figure 13 shows three
instances of the defined normalization functions.
Other normalization functions were defined simi-
larly. Table 1 represents the normalized QoS val-
ues and the assigned weight to each of them in the
process of decision making. The weights should
be assigned based on the provider’s policies as well
as potential clients’ expectations. This can be done
through an analysis of the business domain which is
out of scope of this paper. In this case, we consider
equal weights for privacy and performance metrics
(each one receives 40%). Application specific QoS
requirements are assigned 10%, where they are also
evaluated by the performance metrics. The re-
maining 10% is assigned to the other criteria.

Using the Analytic Hierarchy Process (AHP), we
obtained the total score for each alternative service
by applying the objective function defined in Sec-
tion 3. Based on the total scores, the preferred
alternative is the third option. This composite ser-
vice first uses a task service (skin detector) to em-
ploy the generic service representative to initially
process the client’s data at the client side. Fig-
ure 14 shows the task message generated by this



Figure 14: SkinDetectorTWS task compo-
nents and the corresponding client data.

service. In the next step, it uses a data service
(face detector) to perform the more complicated
and more sensitive face detection process at the
server side. By analyzing the results of this ex-
periments, we conclude that the selected compos-
ite service outperforms other services by reducing
network traffic, reducing execution time, and main-
taining client and provider privacy.

5 Related Work

In this section, we briefly present some research
work from the related literature. In distributed
computing, code on demand [16] (also called code
mobility) refers to any technology that sends exe-
cutable software programs from a server computer
to a client system upon request from the client.
Java applets and Microsoft Silverlight are two in-
stances of code mobility. Task service is a client-
side processing approach and also is an alternative
to code mobility. Task services have advantages
over code on demand approaches due to their com-
posability and scalability. Moreover, task messages
are not executable, which improves client security.

Code mobility has been compared with the tra-
ditional client/server approaches. For example, a
performance analysis of client/server versus agent
based communication was performed in [3] where
the entire agent moves from device to device rather
than having to spend processing time creating a
static agent for each device. A hierarchical frame-
work of benchmarks was proposed in [9] for per-
formance analysis of mobile agent systems. In [18],
Java Remote Invocation (RMI) and .Net Remoting
Architecture were compared based on an experi-
mental performance analysis. Similarly, [19] inves-
tigated three Java-based approaches to distributed
computing (Java RMI, Java applet-servlet commu-
nication and Mobile Agents) using performance pa-
rameters such as code size, latency, response time,
partial failure, concurrency, and ease of develop-
ment. To the best of our knowledge, this paper
is one of a few attempts to compare traditional
(server-side) web services with client-side process-
ing approaches (task services).

Web service performance testing is an emerging
field of software engineering which must be car-
ried out at both the server-side and the client side.
However, choosing the relevant performance crite-
ria is a critical task. At the client-side, web service
performance depends on the amount of data trans-
mitted over the network. At the server-side, selec-
tion of programming language and platform, and
implementation complexity are the primary con-
tributors to web service performance [6]. Data and
task services provide the same business logic and
are implemented using identical technologies. Con-
sequently, we need to compare them, based on their
QoS parameters which are relatively easy to ob-
tain. Open-source performance analysis tools such
as Apache JMeter, Firebug and YSlow can be used
to obtain QoS parameter values efficiently. More-
over, QoS monitoring approaches (e.g., [8]) can be
used.

QoS parameters have been proposed widely in
service selection to compare alternative services.
For example, an interactive web service choice-
making process is proposed in [12], which takes
QoS as a key factor when choosing from function-
ally equivalent services. Similarly, [5] introduces
the web service relevancy function used for mea-
suring the relevancy ranking of a particular Web
service based on client’s preferences, and QoS met-
rics. By considering the service selection prob-
lem as an optimization problem, [22] maximizes an
application-specific utility function under end-to-
end QoS constraints.



Table 1: Normalized QoS parameters values for candidate face detection web services. The third
option receives the highest score and is chosen as the best candidate to model the web service.

QoS metric CET CL CRT CT CS CC CA CCPV CPPV CSC1 CSC2 CSC3 Score
(weight) (0.1)(0.1)(0.1)(0.1)(0.03)(0.05)(0.02)(0.20)(0.20)(0.03)(0.05)(0.02)(1.00)

Option 1 1 0.3 0.12 0.5 0.13 0.12 1 0.5 1 1 0.4 0 0.57
Option 2 0.48 1 1 1 0.3 1 1 1 0.5 1 1 1 0.82
Option 3 0.93 0.9 0.83 0.7 1 0.9 1 1 0.8 1 0.4 0 0.85
Option 4 0.65 0.2 0.08 1 0.03 0.1 1 0.5 0.6 1 0.4 0 0.48

Finally, the generic service representative and
task services were proposed in [10] and [13]. The
former introduced a generic software agent (a sim-
plified version of service representative) that re-
sides at the client side and customizes web service
responses based on the client context. The lat-
ter proposed an architecture for the extended SOA
model including the generic service representatives
and task service providers which supports the novel
concept of client-side service composition. A real-
world application of task services in the healthcare
domain was proposed in [11], where the service rep-
resentative plays the role of a virtual nurse per-
forming assigned tasks by different physicians.

6 Conclusions and Future
Work

In this paper, we proposed a decision model to
help service developers make decisions about the
proper type (server-side data service or client-side
task service) to adopt for web services. The de-
cision criteria are platform dependent QoS which
are evaluated differently for data and task services.
Moreover, based on the case study provided, a com-
position of data and task services can exhibit good
QoS scores if the task service initially processes the
client’s data and the pre-processed data are trans-
ferred to the server for more complex processing.

The proposed model evaluates each business pro-
cess individually. As future work, we plan to solve
an optimization problem to find the best combina-
tion of data and task services representing a com-
posite business process. Finally, we plan to involve
service clients in the decision making process as
follows. The list of decision criteria (QoS param-
eters) will be presented to the service clients for
the weight adjustments. Then the system will re-
calculate the decision model and produces a ranked
list of different service options. Therefore, this user
will have more control on the results based on dif-
ferent priorities.

References

[1] B.Benatallah and H.Motahari Nezhad. Ser-
vice oriented architecture: Overview and di-
rections. In Advances in Software Engineer-
ing, volume 5316 of Lecture Notes in Com-
puter Science, pages 116–130. Springer Berlin
/ Heidelberg, 2008.

[2] B.Liu, P.Ray, and S.Jha. Mapping distributed
application sla to network qos parameters.
In Proc. of 10th International Conference on
Telecommunications, IEEE ICT 2003, vol-
ume 8, pages 1230 – 1235, 2003.

[3] D.Barnes, S.Sankaranarayanan, and
S.Ganesan. Performance analysis of
client/server versus agent based commu-
nication in wireless sensor networks for
health applications. In Electro/Information
Technology, 2009. eit ’09. IEEE International
Conference on, pages 271 –276, june 2009.

[4] D.Menasce. Qos issues in web services. Inter-
net Computing, IEEE, 6(6):72 – 75, 2002.

[5] E.Al-Masri and Q.Mahmoud. Qos-based dis-
covery and ranking of web services. In Com-
puter Communications and Networks, 2007.
ICCCN 2007. Proceedings of 16th Interna-
tional Conference on, pages 529 –534, aug.
2007.

[6] J.Cane. Performance measurements of web
applications. In SoutheastCon, 2003. Proceed-
ings. IEEE, pages 87 – 93, april 2003.

[7] J.Ng, M.Chignell, J.Cordy, and Y.Yesha.
Overview of the smart internet. In The
Smart Internet, volume 6400 of Lecture Notes
in Computer Science, pages 49–56. Springer
Berlin / Heidelberg, 2010.

[8] L.Zeng, H.Lei, and H.Chang. Monitoring
the qos for web services. In Bernd Krmer,
Kwei-Jay Lin, and Priya Narasimhan, editors,
Service-Oriented Computing, volume 4749 of
Lecture Notes in Computer Science, pages
132–144. Springer Berlin / Heidelberg, 2007.



[9] M.Dikaiakos and G.Samaras. A performance
analysis framework for mobile agent systems.
In Tom Wagner and Omer Rana, editors,
Infrastructure for Agents, Multi-Agent Sys-
tems, and Scalable Multi-Agent Systems, vol-
ume 1887 of Lecture Notes in Computer Sci-
ence, pages 180–187. Springer Berlin / Heidel-
berg, 2001.

[10] M.Najafi and K.Sartipi. A Framework for
Context-Aware Services Using Service Cus-
tomizer. In The IEEE International Con-
ference On Advanced Communication Tech-
nology, volume 2, pages 1339–1344, Phoenix
Park, Korea, 2010.

[11] M.Najafi, S.Aghtar, K.Sartipi, and N.Archer.
Virtual Remote Nursing System. In The 1st
IEEE Conference on Consumer eHealth Plat-
forms, pages 101–105, USA, 2011.

[12] M.Yu-jie, C.Jian, and Zhang Z.Shen-sheng,
Zand Jian-hong. Interactive web service
choice-making based on extended qos model.
In Proceedings of the The Fifth International
Conference on Computer and Information
Technology, CIT ’05, pages 1130–1134, Wash-
ington, DC, USA, 2005. IEEE Computer So-
ciety.

[13] M. Najafi and K.Sartipi. Client-side Service
Composition Using Generic Service Represen-
tatives. In CASCON 2010: Proceedings of the
2010 conference of the Center for Advanced
Studies on Collaborative research, pages 238–
252, Toronto, Canada, 2010.

[14] P.Kakumanu, S.Makrogiannis, and
N.Bourbakis. A survey of skin-color modeling
and detection methods. Pattern Recogn.,
40(3):1106–1122, 2007.

[15] M. Proctor, M. Neale, P.Lin, and M.Frandsen.
Drools documentation. Technical report,
JBoss.org, 2008.

[16] R.Brooks. Mobile code paradigms and secu-
rity issues. Internet Computing, IEEE, 8(3):54
– 59, 2004.

[17] R.Jafri and H.Arabnia. A survey of face recog-
nition techniques. Journal of Information
Processing Systems, 5(2):41–68, 2009.

[18] R.Schwarzkopf, M.Mathes, S.Heinzl,
B.Freisleben, and H.Dohmann. Java rmi
versus .net remoting architectural comparison
and performance evaluation. International
Conference on Networking, 0:398–407, 2008.

[19] S.Mangalwede and D.Rao. Performance anal-
ysis of java-based approaches to distributed

computing. International Journal of Recent
Trends in Engineering, 1:556–559, 2009.

[20] S.Ran. A model for web services discovery
with qos. SIGecom Exch., 4:1–10, 2003.

[21] T.Saaty. Decision making with the analytic hi-
erarchy process. International Journal of Ser-
vices Sciences, 1:83–98, 2008.

[22] T.Yu, Y.Zhang, and K.Lin. Efficient algo-
rithms for web services selection with end-to-
end qos constraints. ACM Trans. Web, 1, May
2007.

[23] X.Chen and P.Mohapatra. Performance evalu-
ation of service differentiating internet servers.
IEEE Transactions on Computers, 51:1368–
1375, 2002.

[24] Y.Ofuji, A.Morimoto, S.Abeta, and
M.Sawahashi. Comparison of packet schedul-
ing algorithms focusing on user throughput
in high speed downlink packet access. In
Personal, Indoor and Mobile Radio Commu-
nications, 2002. The 13th IEEE International
Symposium on, volume 3, pages 1462 – 1466,
2002.


