
Web Service Competition:

A New Approach to Service Selection

Mehran Najafi* , Kamran Sartipi**, and Norman Archer***
* Global Business Services, IBM Canada

** Engineering and Applied Science, University of Ontario
*** DeGroote School of Business, McMaster University

As the number of web services that offer
similar functionality increases, more sophisti-
cated techniques for service discovery and se-
lection will be needed. Traditional approaches
compare web services based on their descrip-
tion published in service registries which in-
clude QoS and price/performance ratios, as
well as adaptability. This information is gener-
ated by the service developer and may not be
fully trustable by the client. Moreover, alter-
native services perform differently in different
client contexts that cannot be determined accu-
rately by service descriptors. In this paper, we
propose a novel service selection approach that
compares alternative services based on their
performance in a specific client context. For
this purpose, we extend the SOA infrastructure
model through a component named the compe-
tition desk, that holds a competition among al-
ternative services taken from the service client.
As a result, clients can choose the service that
works best for their needs.

1 Introduction

Service-Oriented Architecture (SOA) [9] is a
high-level and technology-independent concept
that provides architectural blueprints for en-
terprise systems. SOA based architectures fo-
cus on dividing the enterprise application layer,
where its components (as services) have a direct
relationship with the business functionality of
the enterprise.

Copyright c© 2012 Mehran Najafi, Kamran Sar-
tipi, and Norman Archer. Permission to copy is hereby
granted provided the original copyright notice is repro-
duced in copies made.

Emerging technologies such as cloud comput-
ing [16] propose to provide applications as ser-
vices which can then be distributed across the
network and reused in other applications. Con-
sequently, the number of web services that offer
similar functionality increases, and discovering
relevant services (service discovery) and choos-
ing the best one to meet the client’s needs (ser-
vice selection) will be more challenging.

On the other hand, the Smart Internet [14]
was recently introduced as one of the candi-
dates for the next Internet generation, where
the Internet is moving toward a more user-
centric network. The Smart Internet will al-
low clients to select services that work best,
based on client contexts and needs. Toward
these goals, the underlying conceptual model
and infrastructure of SOA must be extended
and modified to meet the new requirements.

Based on the traditional SOA model, service
providers publish descriptions of their services
in the service registry that is used by service
clients to discover and select services. This
model suffers from the following limitations.

• Service descriptions that are provided by
service providers may not be trustable or
accurate enough.

• Service descriptions are usually expressed
globally while service features such as per-
formance and accuracy are different for
different clients, depending on their needs
and contexts.

• Less well-known services are not given an
opportunity to show their features.

161

Figure 1: Proposed extended SOA infrastruc-
ture model.

• Service features vary with different mea-
sures and are obtained under different sit-
uations. Therefore they cannot be simply
and fairly compared, based only on their
descriptions.

Inspired by the business domain, where in
many cases service providers compete to win
clients, we propose a service selection ap-
proach based on service competition (WS-
Competition). In other words, while the tradi-
tional passive service selection relies on service
description comparisons, the proposed active
service competition compares services based on
their performance for a specific client applica-
tion.

We propose to extend the traditional SOA
infrastructure model by adding a new compo-
nent that we call the Competition Desk (Fig-
ure 1). It enables a service client to submit a
list of candidate services (competitors) as well
as a set of test cases and competition policies.
The competition desk asks each of the candi-
date services to employ a representative and
then it holds a competition among the service
representatives and returns the competition re-
sults to the client (Figure 2). As a result, the
client can choose the service that works best
for its needs. The competition desk supports
both data and task services. While a data ser-
vice processes the client’s data at the server
side, a generic and client-side software agent
(the service representative), is employed by a
task service to process client data at the client
side and deliver the service response locally to
the client.

The organization of this paper is as follows.
Data and task services are introduced in Sec-
tion 2. Service selection based on the proposed
competition model is described in Section 3.
Two case studies using a developed prototype
system are presented in Section 4. The discus-
sion (Section 5) explores the applications and
challenges posed by the web service competi-
tion approach. Section 6 discusses work related
to our approach. Finally, conclusions and fu-
ture work are provided in Section 7.

2 Data and Task Services

An enterprise system needs to provide differ-
ent types of web services to model actual ser-
vices in the business domain. Each web service
executes one or more enterprise business pro-
cesses where a business process applies business
rules and performs business actions on inter-
nal (server-side) and external (client-side) busi-
ness data in a defined order. Therefore, a ser-
vice can be modeled by a collection of business
components which includes business processes,
rules, actions, and data. Moreover, a business
process can have server-side and/or client-side
processing. As opposed to the traditional SOA
that considers business services to be identical,
in [12] and [13] we proposed to categorize busi-
ness services into either data or task services.

2.1 Data Service

This represents a typical web service in the cur-
rent SOA model where the service processes the
client’s data and resources completely at the
server site. Consequently, a data service in-
cludes only server-side processing and returns
a service response in the form of data that will
be consumed directly by the client. In other
words, a data web service (DWS) is modeled
by a function that receives the required remote
service parameters (RSPDWS) from the service
client and returns the resulting remote service
responses (RSRDWS) to the service client, as:

DWS : RSPDWS −→ RSRDWS
1

1In defining a function (e.g., DWS), we use the sets
of ”parameters” (e.g., RSPDWS) and ”responses” (e.g.,
RSRDWS) to represent the types of the function’s in-
put and output.

162

Figure 2: High level view of the proposed web service competition.

2.2 Task Service

The concept of task services is introduced
in [13] as web service with the capability of
processing the client’s data and resources par-
tially or completely at the client platform. A
task service performs the required server-side
processing and then it defines a task including
the client-side processing to be performed by
the Service Representative (SR) at the client
platform. A service representative is a generic
client-side software agent with a built-in pro-
cess engine that can be employed by different
service providers to perform different task ser-
vices. The service representative requires both
task logic and task data to perform client-side
processing that can be provided from different
sources. Based on the proposed service model,
while a data service returns business data as
its service response, a task service returns a
task message with the following components:

Task =< Model, Knowledge, Data >

• Task Model specifies an abstract Business
Process Model (BPM) representing the re-
quired client-side processing.

• Task Knowledge provides the required
Business Rules (BR), i.e., descriptive
knowledge, and Business Actions (BA),
i.e., procedural knowledge, to realize the
specified abstract BPM.

• Task Data represents the server-side Busi-
ness Data (BD) that are consumed by the
business rules and actions during the busi-
ness process. However, the required client-
side business data are provided locally by
the service client.

Task components are messages that can be
transmitted efficiently over the network. The
service representative uses the received task
components to perform client-side processing
of the task service on the local service pa-
rameters to provide local service responses.
Consequently, a task web service (TWS) is
modeled by a function where it receives the
required remote service parameters (RSPTWS)
from the service client and then it returns
the resulting task message (TaskTWS) to the
service representative (SRTWS) to process the
local service parameters (LSPTWS) and gen-
erate the local service responses (LSRTWS).

163

Figure 3: Comparison of Data and Task Ser-
vices.

TWS : RSPTWS −→ TaskTWS

SRTWS : TaskTWS × LSPTWS −→ LSRTWS

Task service applications include client data
that should remain at the client platform since
they cannot be transmitted to the server for
reasons of confidentiality, real time response re-
quirements, or being too large to transmit effi-
ciently. Figure 3 compares these two types of
services and the following example illustrates
the different applications of data and task ser-
vices.

• A typical financial adviser data service
asks for the client’s financial information
to provide personalized advice.

• A financial adviser task service generates
a set of general financial advice (e.g., stock
buy and sell advice) according to the
client’s preferences (server-side process-
ing). Moreover, it generates a task mes-
sage for the service representative includ-
ing the required procedure (task model)
and guidelines (task knowledge) to cus-
tomize the general financial advice (task
data) based on the client’s personal infor-
mation (client-side processing).

Finally, the following issues should be men-
tioned about task services.

1. In order to invoke a task service, the ser-
vice client is required to install and use the
generic service representative which may
increase client-side complexity. However,
the developed service representative proto-
type, which is introduced in [12], requires
small memory (a few MBytes) and offers

reasonable computational speed. More-
over, the two types of services offer a trade-
off between client-side complexity and
the importance of local processing of the
client’s data.

2. Instead of customizing the local and
generic service representative, a service
provider can send a customized mobile
agent to the client to perform the client-
side processing of its web service. How-
ever, mobile agents may introduce secu-
rity and privacy challenges and they may
increase network traffic.

3. Task services have advantages over other
client-side processing techniques (such as
scripting or Rich Internet Applications)
due to their composability and scalability.

4. In addition to preserving the client pri-
vacy, task services increase client security
since the client has control of the required
computer resources (e.g., CPU time, stor-
age, and memory) for the service represen-
tative.

5. Required knowledge for the service repre-
sentative can be enterprise assets and re-
sources, and revealing them may violate
the enterprise’s privacy. To prevent this
security vulnerability, a service provider
can use one of the following techniques.
(I) Enterprise knowledge can be divided to
be applied locally (at the provider side) by
the service or externally (at the client side)
by the service representatives. There-
fore, the critical knowledge (e.g, market
analysis) remains at the service provider,
while the non-critical knowledge (e.g., ad-
vice customization guidelines) is sent to
the service representative. (II) The service
client only receives the service response
from the service representative. Conse-
quently, the service client does not have ac-
cess to the knowledge transferred between
the service provider and its representa-
tive. Moreover, encryption techniques can
be used for data transmissions between a
service provider and representative to im-
prove enterprise security.

164

Figure 4: Architecture for the proposed web service competition. The competition desk holds a
competition among the service representatives of the candidate services using the test cases and
policies submitted by the client.

The service representative structure is pro-
posed in the next Section, and task service ex-
amples are presented in Section IV.

3 Web Service Competition

In order to perform a service selection based
on the proposed service competition model, an
architecture is required. The proposed archi-
tecture (Figure 4) includes three main compo-
nents as follows.

3.1 Service Client

A service client consists of a traditional
client application that sends a data or task
service request to a service provider. In order
to receive task services, a service client is
equipped with a generic service representative.
Consequently the client application receives
the service response directly from the service
provider (data services) or indirectly from the
service representative (task services).

To select a service that best matches with
the client’s need, a service client first searches
for candidate services from the service registry.
When these have been found, the service client
submits the following information to the com-
petition desk:

1. Candidate Services which are described
by WSDL (Web Service Description Lan-
guage) documents obtained from the ser-
vice registry.

2. Test Cases where each test case is rep-
resented by a couple (Service Parame-
ters, Expected Results). For a data ser-
vice, Service Parameters include the re-
mote service parameters and Expected Re-
sponse is the expected remote service re-
sponse. However, a task service requires
both remote and local service parameters
as the Service Parameters as well as the
corresponding local service response as the
Expected Response.

3. Competition Policies which define the
relevant competition factors such as accu-

165

racy, cost, response time and other per-
formance metrics. Each of these factors is
associated with an evaluation function to
guide the competition organizer to obtain
their values. Finally, it includes a rank-
ing policy to rank services based on their
results from the competition. The ranking
policy determines the weight of each factor
in the service ranking.

3.2 Services Provider

Corresponding to the type of service, each ser-
vice provider has either a data or task layer
where the former performs the server-side pro-
cessing of a web service and the latter defines
a task for the service representative to perform
client-side processing at the client side. A hy-
brid service that includes both client-side and
server-side processing will require both data
and task layers. Therefore, the enterprise busi-
ness components are divided between these two
layers. While the data layer applies the busi-
ness components, the task layer sends the busi-
ness components to the client-side to be applied
by the service representative.

Service Interface. This component sup-
ports the communication contracts (message-
based communication, formats, protocols, se-
curity, exceptions, and etc) for the services.

Data Layer. Server-side business processes,
rules and actions, and data are stored in the
business workflow, logic, and entity compo-
nents, respectively. The business process en-
gine executes the corresponding business pro-
cess with each service. This layer responds to
the client with a single-segment response mes-
sage (a data message).

Task Layer. Client-side business processes,
rules and actions, and data are stored in the
task model, knowledge, and data components,
respectively. Since business components in this
layer are sent to the client side, they must be
serializable. The task specifier provides the re-
quired model, knowledge, and data for each
task request to be sent by a three-segment
response message (the task message) to the
client.

3.3 Competition Desk

The competition desk manages the web service
competition and has two layers: a service
representative layer and a management layer,
as follows.

Service Representative (SR) Layer.
This layer includes the service representatives
of the candidate services. A service representa-
tive is a generic software agent that represents a
service at the competition desk (or client side)
where it has different components for task and
data services, as follows.

• Task Service Representative: This agent,
shown in Figure 5, performs a task with
the following components.

- Service Stub : invokes a task service by
sending its remote service parameters to
receive a task message.

- Input: inputs local service parameters of
each test case from the competition orga-
nizer.

- Knowledge Base: stores basic and inter-
nal business rules and actions to relieve the
service provider from sending them each
time. Using this internal knowledge base,
a service representative can be customized
for each domain.

- Business Process Engine: executes a task
instance by applying business rules and
performing business actions on business
data.

- Task Manager: provides the following
functionalities to support the entire life cy-
cle of a task instance (i.e., from creation to
termination).

1. Task Invocation: calls a task service
through the service stub to receive a
task message.

2. Task Instantiation: creates an ab-
stract business process based on the
task model and then realizes the ab-
stract process using internal and ex-
ternal task knowledge to generate a
task instance.

3. Task Execution: passes the task in-
stance with the relevant business

166

data (i.e., received from the input
component and task data segment)
to the business process engine to be
executed. Finally, the task manager
sends the task results to the output.

- Local Memory: stores the process vari-
ables of the task process during the task
execution.

- Output: outputs task service response
for each test case to the competition or-
ganizer.

Figure 5: Task service representative compo-
nents.

• Data Service Representative. This agent,
shown in Figure 6, is assigned to a data
service and invokes it for each test case
using the following components.

- Service Stub : invokes the data service for
each test case to receive the corresponding
service response.

- Input: inputs service parameters of each
test case from the competition organizer.

- Output: outputs data service response to
the competition organizer.

Figure 6: Data service representative compo-
nents.

Management Layer. The competition or-
ganizer sets up a service competition based on
the information received from the client, exe-
cuted in the following four phases.

1. SR Instantiation Phase: creates one
generic Service Representative (SR) for
each candidate service. Then, it configures
each SR’s service stub using the WSDL
description (which specifies a service ad-
dress and port) of the corresponding ser-
vice. When this phase is completed, there
is an assigned SR for each candidate ser-
vice that can communicate with the ser-
vice.

2. SR Initialization Phase: calls the task
manager of each task service representa-
tive to invoke its task from the assigned
service and then to instantiate the task.
There is no initialization phase for data
service representatives.

3. Competition Phase: passes the test cases
one by one to each SR and waits until
they respond. During the competition, it
collects information regarding the speci-
fied competition factors (such as response
times). When the competition organizer
receives all the service responses, it com-
putes the value of each competition fac-
tor for each candidate service, based on
the evaluation functions specified by the
client.

4. Ranking Phase: applies the ranking policy
to the obtained results to rank the candi-
date services.

This layer also contains internal components
storing competition policies, test cases, and
candidate services in different categories that
can be used by clients when they cannot or do
not intend to provide this information.

4 Case Studies

To evaluate the effectiveness and feasibility of
service selection based on the proposed web ser-
vice competition approach, we developed a pro-
totype system of the proposed architecture in-
cluding the competition desk, data and task

167

Figure 7: Two test cases for the data service competition: (top) a test case in experiment one with
the expected result = ”Yes” ; (bottom) a test case in experiment three with the expected result =
”No”. While the former represents the client’s interest in face recognition services which recognize
facial orientation, in the latter, the client searches for a face recognition service which works under
variable illuminations.

service providers, data and task service rep-
resentatives, and service client. This proto-
type, WS-Competition version 1.0, is based on
J2EE 1.5 technologies and the Apache Tom-
cat 6.0 application server. Task service repre-
sentatives use Drool version 5.0 as their busi-
ness process engine to execute task instances.
Moreover, the competition desk has an inter-
nal MySQL database to store test cases. Busi-
ness process models are converted to XML for-
mat; business rules are expressed by production
rules and encoded by PMML standard version 3
[15]; business actions are defined by Java state-
ments or functions; and business data are de-
fined by Java beans and serialized to form task
messages. We ran two web service competition
scenarios among data and task services as fol-
lows.

4.1 Data Service Competition

A client searches for a face recognition web ser-
vice that verifies whether facial images belong
to the same person. Although there are sev-
eral algorithms for face recognition, there is no
evidence to show that any one of them is con-
sistently the best one under all circumstances
(e.g., different lighting and orientation condi-
tions) [6].

Candidate Services. Each service takes a
number of facial images belonging to the same
person as well as an unknown facial image (tar-
get face). Then it verifies whether the target
face represents that person. This result is as-
sociated with a confidence level that ranges be-
tween 0 and 1, where 0 represents zero confi-
dence that a match has been made, and 1 rep-
resents full confidence in the match.

WS (face 1, · · · , target face) = (Yes / No,
confidence)

In this case study, the candidate services
include five face recognition services respec-
tively based on Principal Component Analysis
(PCA), Independent Component Analysis
(ICA), Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), and Incre-
mental Neural Network (NN) techniques (these
techniques are introduced in [6]). In addition
to a recognition technique, a face recognition
service requires a data set including training
facial images. To verify the target face, each
service adds the known faces to its training
set; then it builds or completes its recognition
model; and finally the model is applied to the
target face.

168

Test Cases. Each test case is represented in
the form of (face 1, . . . , target face, expected
response) where the expected response is either
”Yes” or ”No”. The service client chooses test
cases that have similar conditions to the actual
cases that he/she wants to have recognized.

Competition Policies. The client specifies
the competition factors as Accuracy, Confi-
dence, and response Time with the following
evaluation functions where S and F represent
the set of successful and failure test cases,
respectively, for a service and | A | represents
the cardinality of set A.

Accuracy = | S |
| Test Cases |

Confidence =
P
iεS confidencei−

P
iεF confidencei

| Test Cases |
T ime = Average(Response T ime)

Finally, the client assigns 0.5, 0.3, and 0.2
for the weights of the Accuracy, Confidence,
and Time in the ranking policy.

Experimental Results. We ran three ex-
periments with the prototype system to dis-
cover the best candidate services in each spe-
cific condition. ORL and Yale face data sets
were used in these experiments. ORL includes
400 facial images of 10 persons while Yale has
165 facial images of 15 persons. Facial images
were divided into three sets: (1) training data,
(2) competition data, and (3) evaluation data,
in the proportions of 60%, 5%, and 35%, re-
spectively. The training data were used by
the candidate services to build their recognition
models; competition data were the test cases;
and evaluation data were used for evaluating
the competition results.

• Experiment 1 : training and competition
data belong to the same data set (ORL);
the client submits five test cases where
each test case contains two known facial
images.

• Experiment 2 : training and competition
data belong to the same data set (Yale);
the client submits five test cases where
each test case contains five known facial
images.

• Experiment 3 : training data belong to the
ORL data set while the competition data
belong to the Yale data set; the client sub-
mits five test cases where each test case
contains three facial images.

In each experiment, the client submitted the
WSDL document of the candidate services, the
corresponding test cases, and the defined com-
petition policies to the competition desk. Fig-
ure 7 shows two instances of the correspond-
ing test cases. Table 1 represents the com-
petition results and the winner in each exper-
iment (Rank =1) where we used a 2.4 GHZ
dual-core CPU and a high-speed bandwidth (1
Mbyte/Sec) link between the servers and the
competition desk.

Table 1: Experimental results for the data ser-
vice competition using five different face recog-
nition web services.

NoCompetitionPCAICALDASVM NN
Factor WS WS WS WS WS

Accuracy 60% 80% 40% 80% 40%
Confidence 38% 66% 16% 61% 12%

1 Time (msec) 1690 2404 1012 6214 2605
Score 0.53 0.67 0.44 0.61 0.31
Rank 3 1 4 2 5

Accuracy 80% 100%100% 100% 60%
Confidence 49% 69% 87% 71% 39%

2 Time (msec) 2237 2873 1148 8519 3012
Score 0.64 0.78 0.96 0.73 0.48
Rank 4 2 1 3 5

Accuracy 60% 80% 60% 80% 60%
Confidence 43% 68% 41% 48% 29%

3 Time (msec) 2023 2603 1129 7147 2078
Score 0.54 0.69 0.63 0.57 0.48
Rank 4 1 2 3 5

To verify whether the service competition
guides the client to select the best service, we
calculated the performance of each web service
in each experiment. The evaluation data (50
facial images in each experiment) were selected
from the same data set as the competition data.
Table 2 represents the results of this evaluation
where the competition desk recommended the
best service (Rank=1) in all three cases. More-
over, the total ranking obtained from the com-
petition has 73 percent accuracy in comparing
the rankings on the evaluation data.

169

Table 2: Evaluation results for the data service
competition.

NoCompetitionPCAICALDASVM NN
Factor WS WS WS WS WS

Accuracy 57% 72% 42% 68% 33%
Confidence 31% 39% 19% 38% 12%

1 Time (msec) 1720 2411 1123 6094 2889
Score 0.51 0.57 0.46 0.49 0.27
Rank 2 1 4 3 5

Accuracy 76% 89% 92% 88% 64%
Confidence 39% 61% 79% 64% 37%

2 Time (msec) 2325 3103 1059 8618 2097
Score 0.59 0.69 0.89 0.65 0.53
Rank 4 2 1 3 5

Accuracy 52% 77% 57% 69% 51%
Confidence 26% 59% 31% 47% 26%

3 Time (msec) 2051 2526 1145 6985 2106
Score 0.44 0.65 0.57 0.51 0.45
Rank 5 1 2 3 4

4.2 Task Service Competition

A skin detector service [7] is a primary need in
many fields including face detection, semantic
filtering of web contents, video surveillance,
and human motion detection. A skin detector
data service requires transferring images and
videos from clients to the server, which is not
efficient. On the other hand, a skin detector
task service which uses a client-side service
representative to evaluate the skin regions
offers higher performance.

Candidate Services. Several methods for
discriminating between skin and non-skin re-
gions have been proposed. They can be cat-
egorized into pixel based and block based ap-
proaches. The former provides faster results
while the latter provides more accuracy. There-
fore, a client should choose a skin detector ser-
vice based on its performance on the specific
client application.

In this case study, the client wants to evalu-
ate the performance of three skin detector web
services: pixel-based; block-based using color
features; and block-based using texture fea-
tures (these techniques are introduced in [17]).
To show a task service outperforms a data ser-
vice for skin detection, we developed both data
and task services for each of the candidate ser-

vices. Then, we compared their service re-
sponse time for a sample image (450 Kbytes).
The comparison results are shown in Table 3.
Processing time and network time are the fac-
tors that influence the response time. To boost
the data service performance, we considered a
dedicated web service (it has no other tasks or
clients) whose processor was two times faster
than the client processor (i.e., 2.4 GHZ dual-
core CPU). Moreover, the service client and
servers were connected by a 1 Mbyte/Sec link.
While a task service receives a request message
(1 Kbyte) and sends a task message (up to 3
Kbytes) to a client-side service representative,
a data service receives an original image (450
Kbytes) and replies by sending the modified im-
age (120 Kbytes). Moreover, while a data ser-
vice must be called for each video frame, a task
service which needs to be called once assigns a
task to a service representative to process the
frames locally.

Table 3: Service time comparison between data
and task skin detector web services.

Service PixelBlock-ColorBlock-Texture
Time (msec) WS WS WS

Task Service 582 1241 1351

Data Service 1094 1519 1594

The skin detector task services work as fol-
lows.

1. Pixel-based skin detector: assigns a task
to the generic service representative to ap-
ply explicit rules for the color values (i.e.,
Red (R), Green (G), and Blue (B)) of each
pixel. Different components of this task
service are shown in Figure 8.

2. Block-based skin detector using color fea-
tures: sends the following task definition as
well as skin patterns (the server-side task
data) to the generic service representative
to customize it for this service. i) Subdi-
vide the image into equal sized blocks; ii)
extract three color features (color mean,
color variance, color skewness) from each
block; iii) compare each block features to
all the skin patterns received from the ser-
vice and choose the blocks whose Mean
Square Error (MSE) is less than a defined

170

threshold as skin blocks; and iv) paint skin
blocks black and non-skin blocks white.
Figure 9 shows the task components for
this web service.

3. Block-based skin detector using texture fea-
tures: assigns a task to the generic ser-
vice representative similarly to the previ-
ous service except that it considers texture
features calculated by wavelet transforms
for each block.

As mentioned before, a service representa-
tive is generic and can represent any services;
however, the SR internal knowledge base
enables the service representative to store
the required business rules and actions for
a specific domain. In this case study, each
task service asks the competition desk to
assign it a service representative who has
basic image processing functions stored in
its internal knowledge base. Otherwise, the
service providers are asked to send the required
knowledge to the generic SRs.

Test Cases. The client provides test cases
in the form of (image , expected result)
where the expected result is an image with the
same number of pixels, but skin and non-skin
pixels are assigned black and white colors,
respectively.

Competition Policies. The client specifies
the competition factors as Accuracy, and
response Time with the following evaluation
functions where FP and TN represent the
False Positive (number of non-skin pixels
considered as skin pixels) and True Negative
(number of not recognized skin-pixels), respec-
tively.

Accuracy = Average(| Pixels |−2∗TN−FP
| Pixels |)

T ime = Average(Response T ime)

In this case study, the client searches for
a web service that captures most of the skin
pixels, therefore the accuracy evaluation
function assigns more weight to TN . We used
different ranking policies for each experiment
(discussed next).

Experimental Results. We collected 60
random images where all images were in color
with various visual qualities, details and differ-
ent light conditions. These images were equally
divided into competition data and evaluation
data. We ran the following two experiments
with our prototype system to discover the best
services in each client application.

• Experiment 1: the client uses this web
service for face detection; therefore the
test cases contain facial images. Since the
client prefers accuracy rather than speed,
0.9 and 0.1were assigned as the weights
for Accuracy and Time respectively in the
ranking policy.

• Experiment 2: the client uses this web
service for web content filtering; therefore
test cases contain body and non-body im-
ages. Since this web service will be used
as a part of a live video streaming system,
it needs to be fast. Therefore the client
assigns 0.8 and 0.2 as the weights for Ac-
curacy and Time in the ranking policy.

In each experiment, the client submitted five
test cases (two instances are shown in figure
10). Table 4 represents the competition re-
sults and the winner service in each experi-
ment. Similarly to the first case study, we cal-
culated the performance of each web service on
the corresponding evaluation data (which in-
cludes 30 images) in each experiment. Table
5 represents the results of this evaluation, con-
firming the service competition results.

5 Discussion

The proposed web service competition is
differentiated from other web service selection
methods as it ranks services based on their
performance on a specific client’s context. In
the discussion section, we list a few important
issues such as the applications and challenges
of the proposed WS-Competition approach.

1. The proposed web service competition
does not intend to replace the traditional web
service selection approaches. However, this ap-
proach provides more accurate selection mech-
anism over the traditional approaches in the

171

Figure 8: Task service components of the Pixel WS where there is no server-side task data. In
the task model, a business rule is assigned the ’?’ symbol to differentiate from a business action.
Moreover, SR.Internal.x refers to the business actions stored in the SR internal knowledge base.

Table 4: Experimental results for the task ser-
vice competition using three skin detection ser-
vices.

NoCompetitionPixelBlock- Block-
Factor Color Texture

WS WS WS

Accuracy 91% 85% 89%
1 Time (msec) 829 2071 2979

Score 0.92 0.79 0.82
Rank 1 3 2

Accuracy 67% 83% 86%
2 Time (msec) 837 2004 3709

Score 0.73 0.76 0.74
Rank 3 1 2

following cases: I) The service descriptions are
not accurate or comprehensive enough where
the services should be ranked based on their
performance. II) The service client wants to
choose the best service among multiple can-
didate services where they represent different
performance levels based on the client’s context
or specific application. III) The service client
intends to specify the service ranking criteria
to test and compare available services.

2. Service competition can not be offered free
of charge for the pay-by-use services because of
costs associated with tests of the competition
desk. However, some services provide free trials
or test versions of their web services which can
be used by the competition desk. Otherwise,

Table 5: Evaluation results for the task service
competition.

NoCompetitionPixelBlock- Block-
Factor Color Texture

WS WS WS

Accuracy 88% 81% 83%
1 Time (msec) 823 2012 3020

Score 0.89 0.77 0.77
Rank 1 2 2

Accuracy 64% 85% 81%
2 Time (msec) 817 2051 3631

Score 0.71 0.76 0.69
Rank 2 1 3

the competition by itself may have costs which
must be paid by the service client. To support
these cases, a billing model for the competition
desk is required.

3. The competition desk can be provided
as a web service search engine where the ser-
vice client sends a query request including the
category of services as well as the search cri-
teria (competition factors). Moreover, the ser-
vice client either submits its own test cases or
asks the search engine to use its predefined test
cases for the specified service category to hold
the web service competition. Finally, the web
service engine returns a ranked list of services
to be selected by the service client.

4. The introduction of an actor in the SOA
model and the associated tests may increase

172

Figure 9: Task service components of the Block-Color WS where the service provider sends skin
patterns as server-side task data.

the required time for service selection. In most
of the cases, service selection includes a long-
term agreement between the service client and
the service provider. Consequently, the ser-
vice client prefers service selection approaches
which offer more accurate and customized re-
sults over those generating their results faster.
However, it may limit the applications of web
service competition for dynamic service dis-
covery which requires run-time re-binding to
new and un-known services whenever the ac-
tual QoS deviates from initial estimates, or
when a service is not available.

6 Related Work

Current web service discovery is based on
UDDI (Universal Description, Discovery, and
Integration), a standard for centralized reposi-
tories. Several protocols (such as Jini, UPnP,
and Salutation)[5], middle-wares, and frame-
works address service discovery, all based on
the service descriptions published in a (UDDI)
service registry. Semantic web technology has
been applied to create and analyze web service
descriptors. For example, WS-Inspection [1] is
a web service specification for discovery docu-
ments that describes services at different levels
and from various perspectives or [10] that pro-
poses semantic and ontology-based service de-
scriptors to be used in service discovery. Con-

sidering service descriptions could be promis-
ing in theory, but unfortunately most of the
descriptions available are low quality. There-
fore, a major challenge that web service tech-
nology faces is the discovery and selection of
services, based on their capabilities and perfor-
mance. That is addressed in this paper.

The integration of software agents and
web services has been proposed to model the
business aspects of enterprise systems, where
each role or major function of an enterprise
system is considered as an agent. Moreover,
autonomous computing and software agents
have had increasing application in service
discovery. For example [8] proposes agents
that rank services by analyzing the client’s
behaviour and satisfaction about services. The
Service Location Protocol (SLP) [3] has also
been used in service discovery including user,
service, and directory agents. In this paper,
we have assigned a new role (i.e., service
representative at the competition desk) to
software agents to model enterprise agents in
the business domain. As an alternative to
our generic service representatives, one could
consider sending customized mobile agents
from the candidate services to the competition
desk. However, there are several security and
privacy issues to be considered in mobile agent
computing [4]. Mobile agent architectures
also suffer from low efficiency, as they need

173

Figure 10: Four test cases (image, expected result) for the task service competition: (top) represents
two test cases for experiment one where the client needs this service for a face detection application;
(bottom) represents two test cases for experiment two where the client will use the service for web
content filtering.

to transmit the entire computer program or
process through the network.

As a part of the proposed web service com-
petition, the competition desk implicitly tests
the candidate web services based on the sub-
mitted test cases by a service client. Several
approaches have been proposed for the topic
of web service testing, as surveyed in [2]. For
example, a scenario-based testing method was
proposed in [18] which requires an extension to
WSDL service description. Moreover, there are
several approaches which propose to extend the
UDDI registries with testing features. Based
on these approaches, the service provider re-
leases the test suites together with the service
description to the service registries. As a re-
sult, the service registry moves toward an ac-
tive role as a service tester. The proposed web
service competition is differentiated from other
service testing approaches by at least two fac-
tors: (i) to the best of our knowledge, the web
service competition is the very first attempt to
test web services based on the client’s context;
and (ii) the testing of client-side web services
(e.g., task services) was not covered in previous
work.

7 Conclusions and Future
Work

For efficient service discovery, a service client
needs to know both the functionality of each
candidate service and the capability to perform
it well for the client’s specific application. Be-
cause service descriptors can not support effi-
ciently both the functional and non-functional
aspects of a service, a service client is forced to
either examine many potential services or sim-
ply make a random choice. In this paper, we
propose a mechanism to help a service client
to select web services based on their perfor-
mance and the client’s needs. For future work,
we plan to examine this approach in more case
studies such as the competition among decision
support services. The competition policies will
be standardized and extended to support both
functional and non-functional service features.
And finally by addressing the potential inter-
operability issues and developing the required
protocols, our ultimate goal is to extend our
work to introduce a web service engine that
finds and ranks services based on the proposed
web service competition process.

174

References

[1] K Ballinger, P Brittenham, A Malhotra,
W Nagy, and S Pharies. Web Services
Inspection Language (WS-Inspection) 1.0.
IBM, 2001.

[2] G Canfora and M Di Penta. Service-
oriented architectures testing: A survey.
In Andrea De Lucia and Filomena Fer-
rucci, editors, Software Engineering, vol-
ume 5413 of Lecture Notes in Computer
Science, pages 78–105. Springer Berlin /
Heidelberg, 2009.

[3] E Guttman. Service location protocol:
Automatic discovery of ip network ser-
vices. IEEE Internet Computing, 3(4):71–
80, 1999.

[4] M Hadzic, P Wongthongtham, T Dillo,
E Chang, M Hadzic, P Wongthongtham,
T Dillon, and E Chang. Introduction to
multi-agent systems. In Ontology-Based
Multi-Agent Systems, volume 219 of Stud-
ies in Computational Intelligence, pages
15–35. Springer Berlin / Heidelberg, 2009.

[5] S Hagemann, C Letz, and G Vossen. Web
service discovery - reality check 2.0. Next
Generation Web Services Practices, Inter-
national Conference on, 0:113–118, 2007.

[6] R Jafri and H Arabnia. A survey of face
recognition techniques. Journal of In-
formation Processing Systems, 5(2):41–68,
2009.

[7] P Kakumanu, S Makrogiannis, and
N Bourbakis. A survey of skin-color mod-
eling and detection methods. Pattern
Recogn., 40(3):1106–1122, 2007.

[8] N Kokash. Web service discovery with im-
plicit qos filtering. In In Proceedings of the
IBM PhD student symposium, in conjunc-
tion with ICSOC 2005, pages 61–28666,
Netherlands, 2005.

[9] D Krafzig, K Banke, and D Slama. Enter-
prise SOA: Service Oriented Architecture
Best Practices. Prentice-Hall, 2005.

[10] U Kuster, H Lausen, and B Konig-Ries.
Evaluation of semantic service discovery—
a survey and directions for future research.
Emerging Web Services Technology, Vol-
ume II, pages 41–58, 2008.

[11] M Najafi and K Sartipi. A Framework
for Context-Aware Services Using Service
Customizer. In The IEEE International
Conference On Advanced Communication
Technology, volume 2, pages 1339–1344,
Phoenix Park, Korea, 2010.

[12] M Najafi and K Sartipi. Client-side Ser-
vice Composition Using Generic Service
Representatives. In CASCON 2010: Pro-
ceedings of the 2010 conference of the Cen-
ter for Advanced Studies on Collaborative
research, pages 238–252, Toronto, Canada,
2010.

[13] M Najafi and K Sartipi. Modeling service
representatives in enterprise systems using
generic agents. Service Oriented Comput-
ing and Applications, 5:245–264, 2011.

[14] J Ng, M Chignell, J Cordy, and Y Yesha.
Overview of the smart internet. In The
Smart Internet, volume 6400 of Lecture
Notes in Computer Science, pages 49–56.
Springer Berlin / Heidelberg, 2010.

[15] S Raspl. Pmml version 3.0 - overview and
status. In The ACM Workshop on Data
Mining Standards, Services and Plat-
forms, pages 18–22, Philadelphia, USA,
2004.

[16] G Reese. Cloud Application Architectures:
Building Applications and Infrastructure
in the Cloud. O’Reilly Media, Inc., 2009.

[17] H Sajedi, M Najafi, and S Kasaei. A
boosted skin detection method based on
pixel and block information. pages 146 –
151, sep. 2007.

[18] A Tarhini, H Fouchal, and N Mansour.
A simple approach for testing web ser-
vice based applications. In Innovative In-
ternet Community Systems, volume 3908
of Lecture Notes in Computer Science,
pages 134–146. Springer Berlin / Heidel-
berg, 2006.

175

