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ABSTRACT
The increasing availability of very large volumes of digital data
(i.e. Big Data) enables many interesting research streams on a wide
variety of phenomena. However, there has been a paucity of Big
Data sets in the area of cybersecurity in information systems, as
organizations are reluctant to share data that may provide too much
unrestricted visibility into their operations. In this study, we explore
the use of a real-life, anonymized, very large dataset containing
user behavior – as captured in log files – including both regular
usage as well as misuse, typifying the dynamics found in a situation
with compromised user credentials. Through the experiment, we
validate that the existence of a large user behavior dataset in itself
does not necessarily guarantee that abnormal behaviors can be
found. It is essential that researchers apply deep domain knowledge,
critical thinking and practical focus to ensure the data can produce
the knowledge required for the ultimate objective of detecting an
insider’s threat. In this paper we develop, formulate and calculate
the features that best represent user behavior in the underlying
information systems, maintaining a parsimonious balance between
complexity, resource demands and detection effectiveness. We test
the use of a classification model that proves the usefulness and
aplicability of the features extracted.
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1 INTRODUCTION
Information Technology has dramatically changed society in many
ways. The workplace is a radically different environment since
Information Systems (IS) became one of the strongest enablers for
its processes. Almost every organization uses – and depends – on IS
for the delivery of value. But IS can be misused. Security issues in IS
are becoming more prevalent, and are being more widely reported
than ever before. News pertaining to the stealing of IS users’ data
such as the Yahoo incident [19] and the stolen credit data of non-
users from the company Equifax [16] have significantly increased
public awareness on the importance of cybersecurity. Furthermore,
the very public coverage of the data released by Edward Snowden
[24]- which we can consider an ’insider’s threat’ becoming a reality
- highlight the growing importance of security and privacy in the
fabric of today’s society in general, and IS in particular. In addition
to the significant damage suffered by themillions of direct victims of
these acts, the stakeholders (organizations and individuals) deemed
accountable (regardless of who was responsible) for these events
have faced severe consequences in cost, reputation and even in
their lives and careers [22].

The insider’s threat, in particular, is a growing issue in orga-
nizations. It can be defined as a threat originating from users (or
somebody impersonating them) who have been given access rights
to an IS and misuse their privileges, impacting the confidentiality,
availability or integrity of the information deliberately or because
of non-compliance [27].

Insider’s misuse of IS is a significant challenge for organizations,
as exemplified in the leak of diplomatic papers by Chelsea Manning
[23]. Insiders accounted for as much as 39% of data breaches in
2015, through accidental or deliberate misuse of data [21], but this
rate is poised to increase with the growing number of users and
interconnected systems in an ever-more technified society. The
Insider’s threat in IS as a phenomena provides fascinating elements:
the use of IS is regularly and systematically stored electronically
through the creation of logs. These are files that record the events
and interactions that users have with an IS. A thorough and timely
review of the logs from the various IS used may help the detection
of abnormal behaviors that can signal a misuse of users’ creden-
tials. However, this task is complex, resource-intensive and may
not suffice for the identification of the threat. The logs usually store
information in a non-structured manner – very large text files in
some cases –, and capture myriad different events that may be
non-related to the behavior of the user in the IS. Even the task
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of searching for the abnormal behavior can become impractical
unless there is a way to separate normal from abnormal observa-
tions – most of the time without previous knowledge or a varying
conception of what normality looks like.

The analysis of user behavior patterns requires a projection of
the data into a space in which computational models can be utilized.
At the most basic level, we are interested in the features that best
represent user behaviors in the information system. A feature can
be defined as a variable that describes aspects of the objects in scope
[9]. A feature shall define, characterize or identify the underlying
phenomena in a manner that can be used by downstream processes.
The process of feature engineering may involve mathematical trans-
formation of the raw data, feature extraction and/or generation,
feature selection and feature evaluation. The processes may include
(dis)aggregation, cleansing, coding and/or imputation of variables
[12].

In this experiment we use a very large, anonymized dataset -
almost 1.6 billion records - that has been collected from production
systems running for a period of two months. The data includes
labeled misuse of the IS, providing a unique opportunity to perform
and assess the strength of the feature engineering process.

Our contribution to researchers and practitioners include:

Selection of effective user behavior features. we suggest the most
relevant features enabling analysis of user behavior towards detect-
ing IS insider’s misuse. These features can be used as the depart-
ing point for the creation of insider’s threat detection systems in
academia and industry.

Efficient feature extraction and transformation. we share our
learnings extracting and transforming variables on a large scale
environment that typifies real conditions, and how the efficiency
needs are paramount for a timely outcome.

Insider’s threat detection system architecture. we articulate a sys-
tem architecture that meets the needs of our current scope, and can
be implemented at scale for very large distributed systems.

The remainder of this paper is organized as follows. Section
2 provides the required background information useful in under-
standing the experiment performed. In Section 3 we describe the
real-world, large dataset we use in this research. Section 4 discusses
the proposed approach including the system architecture. In Sec-
tion 5 we document our experiment results, and we conclude the
paper with a discussion in Section 6.

2 BACKGROUND AND RELATEDWORK
In this section we provide key elements that are useful in the inter-
pretation of the results of this study.

2.1 Machine Learning
Within the scope of Artificial Intelligence (AI), machine learning
has taken a central stage. It is concerned with a specific application
of AI, in that it seeks to design artifacts that are able to learn based
on data. This is in contrast with the typical computing paradigm of
programming software declaratively to react to specific actions or

events. In the machine learning realm, there are few literal instruc-
tions given to the system, but rather it is trained based on examples
(i.e. historical data).

The output ofmachine learning constructs can be divided broadly
in two kinds: a parametric one in which there is an assumption on
the functional relationship between the variables (such as linear or
logistic regression), and a non-parametric one in which no parame-
ters (such as the β in regression) are estimated and that typically
would require large amounts of data for its proper functioning.

Machine learning tasks can be broadly categorized as supervised
or unsupervised. Supervised learning happens when the AI artifact
is trained using data that has been previously labeled, or classified.
In the detection of IS’ misuse by insiders, the AI would be given
examples (labeled data) on both normal and abnormal behaviors, ul-
timately creating a model to use in the classification of observations.
In unsupervised learning, the machine learning artifact is given the
historical data without labels. In other words, the machine learning
algorithm needs to ’decide’ first what the normality baseline is, in
order to identify potential abnormal behaviors.

Very broadly we can abstract the actions that are possible in
machine learning in four types: classification, prediction, clustering
and pattern mining.

In classification activities, an AI identifies an object or observa-
tion as belonging to a specific class. This is typically a supervised
task since the labels have to be knownwhen the actual classification
is performed. In the insider’s threat detection, we have a typical
two-class (or binary) classification model: whether an observation
is (or not) insider’s misuse.

In prediction, an unknown value is forecasted. E.g. the actual
number of computers accessed by a user. Some times this activity
is called regression since this process typifies the prediction of a
value.

In clustering, the labels or classes, are not known in advance –
rather the AI groups objects together based on predefined measures
of similarity. E.g. grouping users by computer usage volume.

In patternmining the AI finds reoccurring regularities that appear
in the data. E.g. what user behaviors are most associated with one
another. These are the four basic activities that can be executed

Figure 1: Mind map of machine learning concepts.
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Figure 2: Classification model performance: example with four observations.

with machine learning. Other activities that are more specialized
can be derived as ensembles of these four foundational tasks, or
may include specific implementations such as density estimation
or dimensionality reduction. A summary of the machine learning
concepts is depicted as a mind map in Figure 1.

2.2 Success Metrics in Binary Classification
Models

The detection of insider’s misuse of IS can be formulated as a bi-
nary classification problem. In other words, the model receives as
input an observation (i.e. user behavior) and produces a probability
(between 0 and 1) of that observation being an insider’s threat. For
illustration purposes, we assume that the number of actual threats
and of normal behaviors follow a normal distribution, as depicted
in Figure 2(a). The ground truth – known and labeled data – is
that A, B and C are normal behaviors, whereas D and E are insider
threats taking place. If the probability of the observation being a
threat is higher than a specified threshold, the system classifies the
observation as an insider’s threat. In the table on Figure 2(c) we
display the resulting probabilities for each observation under five
different thresholds: <0.25, 0.3, 0.5, 0.65 and >0.75. Choosing one
of these thresholds would lead to different accuracy rates. These
results can be quantified using a confusion matrix. Please refer to
Figure 3.

X represents the actual number of insider’s threats that were
predicted correctly. W is the number of normal events that were
correctly predicted as normal. Y and Z represent the number of
observations that were predicted as one class but are in reality a

Figure 3: Confusion matrix for a two-class or binary classi-
fication.

member of the other class. We define sensitivity as the ability of
the model for correctly predicting an insider’s threat (’true posi-
tives’), and specificity of the classifier as its ability to predict normal
behavior (’true negatives’).

sensitivity = true_positive_rate =
X

X + Y

speci f icity = true_negative_rate =
W

Z +W

Sensitivity is also referred to as the true-positive rate or proba-
bility of detection. Conversely, specificity of the model is defined
as the ability to rule out observations as non-anomalous correctly.
We can also call it true-negative rate. Whereas sensitivity quantifies
the avoiding of false negatives, specificity quantifies the avoiding
of false positives. A perfect classifier has a sensitivity of 100% and a



CASCON’18, October 2018, Markham, Ontario, Canada Lopez, E. and Sartipi, K.

specificity of 100%. In reality, classification models exhibit a trade-
off between the two values. If we depict the confusion matrices for
the thresholds of 0.3 and 0.5, they would show the values in Figure
4.

Figure 4: Confusionmatrices for thresholds at 0.3 and 0.5 for
the classification model and observations A, B, C, D and E.

The true positive and false positive rates will change depending
on the thresholdwe select. If we plot these two rates for all threshold
values and all available observations, we obtail a Receiver Operating
Characteristic or ROC curve, depicted on Figure 2(b).

A very good classifier that separates correctly the two classes
would tend to the upper left point [0,1]. A very bad classifier would
be equivalent to a random draw, with a curve close to the diagonal.
The Area Under the Curve (AUC) is usually used to represent the
quality of a given classifier as captured in a ROC curve [7].

ROC curves are very popular in medical and clinical applications,
since it is a suitable tools to run experiments and compare different
models. In the case of the insider’s threat detection, we use ROC
curves, and more specifically the AUC, for the purposes of validat-
ing that the features we selected can enable a good classification
model with AUC larger than 0.5.

2.3 Feature Engineering
Machine learning models have as a defining characteristic the need
for large amounts of data. However, the existence of large datasets
is in itself not sufficient for obtaining results through computa-
tional and mathematical models [8]. It is possible that the data
does not represent well the characteristics that are the objective of
the analysis. The activities undertaken to ensure the dataset suit-
ably represents the knowledge we are seeking through inductive
analysis is called feature engineering.

It is possible to abstract the feature engineering as multiple
iterations of three tasks in sequence: feature construction, fea-
ture selection and feature evaluation [9]. The construction of the
features may involve plethora of activities oriented towards the
meaningful representation of the data. (Dis)aggregation, constrain-
ing, (de)normalization, categorization, binning or other transfor-
mations may be required for the conversion of raw data into a
task-representative feature space. Effective feature construction
usually requires solid domain knowledge and a pragmatical goal-
orientation. The same raw dataset may provide different features
depending on the ultimate objective for the computational model.
The output of feature construction is a rich feature set that enables
computational models’ use.

In many situations, the constructed set is large, evidencing the
’course of dimensionality’ in which a significant number of dimen-
sions are represented in the features. Some of the features may not

bring new information, or may not represent well the knowledge
we are looking for. Thus, the process of feature selection ensures
that the machine learning model has the most uniquely relevant
features that are fit-for-purpose.

Once the feature set has been determined, it can be tested against
the data. If the data is labeled, multiple accuracy metrics can be
utilized for assessing how well the feature set represents the knowl-
edge of interest. Feature evaluation is also an important process to
perform when there is feature and/or concept drift. Feature evolu-
tion is present when the features used to represent the data change,
e.g. when new tags are used to represent existing images in a sys-
tem. The concept drift occurs when the same features represent a
different class. Concept evolution happens when new classes appear
in the phenomena.

Research in feature engineering is extensive and diverse. In some
cases, the nature of the data drives the feature engineering activities
to be conducted. This is typified by the multiple applications related
to Natural Language Processing (NPL). From the initial work for
the use of appropriate terms in document indexing [17], the field
has evolved into developing features that go beyond the classical
bag of words and into syntactic, stylistic [11] and semantic feature
extraction [14]. For visual data, object detection and speech recog-
nition, there has been an evolution from feature extraction tasks
designed by the researcher using specific domain knowledge to the
automated discovery of latent features, most recently using deep
architectures in neural networks [15]. The use of deep learning for
the analysis of system logs shows promising results [10], potentially
leading the way to its application to the insider threat phenomena.

In terms of feature engineering as applied to the insider’s threat,
it is essential to recognize the particular characteristics that the
phenomena provides. The raw data for this experiment comes from
multiple system logs. This file captures multiple events – some time
unrelated to each other – that happened on a specific time frame in a
particular resource. Having a time stamp for each event means that
the data structure has some characteristics typical of a time-series
domain. Meaningful features may be extracted through character-
ization methods using autocorrelation, distribution, stationarity,
entropy and non-linear time-series analysis [9]. The transformation
of time-based data into a feature space may allow understanding
at a different level of abstraction. However, it is important to rec-
ognize that time-series feature extraction alone may be unsuitable
to the understanding of user behavior. A user may perform tasks
at varying speeds, potentially identifying the same sequence as
different patterns. A complementary approach may involve the use
of timeless features (sometimes referred to as spatial) as well as tem-
poral features. In detecting the insider’s misuse, the total number of
authentications, or the count of computers accessed over the whole
analysis timespan may provide relevant information. Using the
spatial features when constrained by timing values would provide
the additional insight that may indicate changes in behaviors that
are due to information systems misuse.

A second critical nature of the insider’s threat data pertains to
its condition as a data stream. A system log may be viewed as a
pipeline of observations that capture events that are happening
to the entities in the space. Data streams mean not only new ob-
servation, but may also change the context in relevant ways for
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the machine learning artifact. We can have one or several of the
following:

Feature evolution. In this case, there is a varying number of fea-
tures in the data stream at different points in time. To address
feature evolution, it is possible to perform feature construction
through linear projection functions. One of the most used is an ap-
plication of Principal Component Analysis (PCA), which calculates
a new set of features based on a linear combination of the existing
variables so it is possible to account with most of the variance in
the data [18]. In this case PCA addresses not only the course of
dimensionality but also ensuring that the principal components are
the transformed features to use in the identification of the threat.
When the distribution of the data is not linear, an extension called
Kernel PCA can be used [13].

Concept drift. This is present whenever the thresholds for class
determination change [25]. In the insider’s threat, concept drift is
expected, thus it is important that the model be re-represented so
the new dynamics linking feature to classes are suitably updated.

Concept evolution. New observations may imply that there are
new classes not seem previously [25]. Since we have interpreted
the insider threat as a binary classification model, we expect the
same two classes (normal, insider threat) to be constant.

A third characteristic that is relevant to the insider’s threat de-
tection pertains to the sequence patterns in the data. A system log
contains information about the specific sequence of activities a user
is following. User behaviors interpreted as a sequence of actions or
events can be modeled through graphs. Feature construction from
sequence data or graphs involve the mining of patterns: this may in-
clude association mining, frequent sequences identification. Given
the very large number of patterns that can be extracted from system
logs, it is important to employ strategies to reduce the search space.

Feature engineering for user behaviors with the goal of detecting
insider misuse of information systemsmay draw concepts frommul-
tiple domains in its quest to represent the underlying information
of interest.

Since the challenge we face in the insider’s IS misuse detection
pertain to the behavior of the user within the system, we require
markers that clearly delineate the user’s actions in the system. Two
common types of behavioral features found in the literature [26]
are defined as follows:

2.4 Learning Approaches for Insider Threat
Detection

Broadly speaking, a classification model is used when detecting the
insider’s misuse of an information system. The classifier may deem
a user behavior in the IS as normal or anomalous. If there is labeled
data that the classifier can use – a ’signature’ – the detection of
IS misuse will rely on comparing each observation to the baseline.
This is akin to the classical approach that can be found in many
of the anti-virus software packages available. A signature file is
used as the yardstick in detecting malicious software that may
have been downloaded to a computer. This approach is resource-
efficient since the computing task performed is a relatively trivial
direct comparison. The false positives (normal behaviors identified
as abnormal) are usually few since the control is explicit in its

appraisal and the outcome unequivocal. The main drawback from
this method is that the threat agent can avoid the control by using
different, new abnormal behaviors for which no signature yet exists.

In contrast, an anomaly detection procedure concentrates on
defining what a normal behavior looks like first – in as close to real-
time as possible – and compares it against the observation being
assessed. Anomaly detection is a widely researched topic in schol-
arly literature. It can be defined identification of observations or
cases that do not follow the established normal patterns. Anomaly
detection is inherently an unsupervised learning task, as It assumes
no pre-labeled data exists describing what normal or anomaly is.
Anomaly detection as a method can be found in many domains, as
the identification of anomalies is applicable across many activities.
From the vantage point of cybersecurity and the insider’s misuse
of IS, the data available to the system administrator – or the AI
artifacts – is limited to the logs capturing the activity and events
on any given system. This data has not been classified until that
moment. The task at hand is, therefore, to evaluate a set of historical
observations stored in the log file and use them to classify a new
observation as normal or abnormal. Anomaly detection focuses first
on creating a profile that represents normality [? ] and then com-
pares the created baseline against the new observations. To some
degree, anomaly detection can be described as a process of creating
the signatures dynamically, and then comparing the observations
against them. The drawbacks of the anomaly detection approach
include that it is resource-intensive, and may have a large number
of true negatives (or behaviors considered anomalous when they
are normal). These two aspects are becoming less of an issue as
the computing power available grows and the sophistication of the
algorithms available increases.

From the vantage point of cybersecurity, anomaly detection can
be found in multiple works across many areas, as a established
technique for the identification of anomalous behavior [20].

3 DATASET
Having the opportunity of using real-life datasets for the purposes
of security research is rather uncommon as organizations are reluc-
tant to share information that may provide too much visibility into
their operations and the potential security issues they have encoun-
tered. There are some databases available to researchers but they
are usually fully synthetic, outdated or not very large. The paucity
of data makes the process of articulating or testing security-centric
theories difficult. Fortunately, a dataset has been made available
from the Los Alamos National Laboratory in the United States [2].
This anonymized dataset is the result of 58 days of continuous mon-
itoring on multiple systems in their computer network, for more
than 12,000+ users and 17,000+ computers [6]. The data includes
labeled observations identifying known compromised users and
events, creating a remarkable opportunity to analyze and test the
effectiveness and efficiency of IS misuse detection techniques when
applied to the insider’s threat identification. The processing of this
large dataset characterizes well the challenges associated with Big
Data. It contains large volumes of unstructured data, represent-
ing high-velocity creation of logs from multiple computer systems
(routers, desktop and server machines) and their users. The dataset
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also includes labeled data identifying known compromising events.
The dataset is 90 GB+ with approximately 1.6 billion records.

The following is a description of the data entities present in the
dataset.

• Authentications. This dataset contains 1.051 billion authenti-
cation events on individual computers – servers and work-
stations. Each of these records is an authentication event, i.e.
a user or a computer loging into a system. It includes nine
variables for each observation. It collects the time (measured
in seconds since the beginning of the timeline), the source
and destination user, the source and destination computers,
the authentication type, the logon type, the authentication
orientation, and whether it was a successful attempt or not.
Figure 5 shows a representative list of records.

Figure 5: Sample authentication records of the dataset.

• DomainName Service. This dataset contains 40,821,591 records.
The events recorded in this dataset pertain to the translation
of network names (such as ’www.google.com’) to their nu-
merical equivalent in the underlying network (also called an
IP address).

• Network Flows. This dataset contains 129,977,412 records.
The events recorded in this table capture the routing actions
performed by the network computing devices.

• Processes . This table contains 426,045,096 records. It lists
all the processes (which we will equate to applications or
programs) that the user ran on the computer system directly
or as a result of an application being used in a system. It
contains the time in which it took place (in seconds), the
computer or user@domain that ran the process, the com-
puter in which it was executed, the process identifier and
whether it is start/end event.

• Compromised Users. This dataset contains 749 records. Each
record belongs to a user that is a known information system
misuse event taking place. It contains 4 fields: the time (in
seconds) in which the event was captured, the user@domain,
the source computer and the destination computer. This is
the table that will be used for the purposes of testing the
prediction models to be developed. There are no missing or
invalid values.

It is important to note that from the 12,000+ users in the dataset,
there were 98 users identified as compromised, or less than 0.9%.
From the 1.058 billion authentication events, only 749 events are
compromised.

4 APPROACH
Given the context in which we design and run the experiment,
we now describe the architecture selected, as well as the feature
engineering process posited.

4.1 Architecture
To use machine learning for the purposes of this experiment, we
abstract the activities into three main processes: data transforma-
tion into a feature set, Model learning based on training data and
decision making using the current observation, which we set at t0.
Please refer to Figure 6 for a task-based architecture of the experi-
mental system. The abstractions enable us to assess each component
and the context – spatial and temporal – in which it operates.

The learning stage uses as input the historical data as it creates
the baseline profile. The processing demands in this stage are usu-
ally higher than those on the decide stage, as it depends directly on
the characteristics of the data, the specific AI activity taking place
and the parameters selected – especially how long in the past we
set the model to analyze. The transformation of the dataset into a

Figure 6: Task-level system architecture.

feature set needs to comply with both qualitative and quantitative
principles. The features produced must be fit-for-purpose: they
need to contain information that a mathematical model can use to
make decisions. They need alignment with the hypothesis space
in which the machine learning model is used. If the historical data
is not rich enough, it may be difficult to assess if there is anything
abnormal about it. In terms of the quantitative requirements, the
information produced by the transformation shall be sufficient for
the learning data (i.e. training) an effective representation of the
phenomenon.

In the architecture designed, raw data observations are trans-
formed into features through the transform component for a period
T ). The domain in which the machine learning will operate – cy-
bersecurity – requires all the processes to be performed rapidly, so
the actual outcome (normal or abnormal behavior) is relevant by
the time a decision is made by the system.

Once the features are available for analysis, sufficient historical
information shall be collected and provided to the learner compo-
nent. This means that a time window needs to be created (of length
W ) for the receiving of the features. The learning component will
take L time intervals in the training of the model, and the decision
is made in an interval D. If the time window for the historical data
is too far in the past (large T ), current normal behaviors that have
not been seen before may be wrongly identified as anomalies. A
time window that is too long (largeW ) will impact the timeliness
of the outcome, as well as the normality signature being produced.

In the context of a timely analysis (such as the insider’s misuse of
an IS), it is critical that the learning stage takes place continuously
and efficiently. This may drive a need for significant computational
power or a very efficient algorithm that can effectively analyze large
datasets in an acceptable time span. If the log files are very large, the
learning of the normality baseline may take a long time, rendering
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the analysis potentially irrelevant (e.g. an insider’s misuse identified
too late to take any action). A final requirement that is essential
to the smooth flow of the anomaly detection scheme pertains to
the continuous functioning of the detection artifact. Given the
immediateness requirement placed on the detection procedure, the
deciding stage needs to happen in real-time. This also places a
burden on the architecture of the system, since it needs to be online
the vast majority of the time.

In order to meet the requirements for the insider’s misuse detec-
tion, we select two technology stacks that provide the versatility
and power needed, and leverage the availability of a High Perfor-
mance Computer environment.

Apache Spark [1] is a general engine for large scale data pro-
cessing, and contains multiple Application Programming Interfaces
(API) in popular languages such as Python, Java and R. Apache
Spark takes advantage of computing abstractions and parallelism
for the processing of very large datasets. It contains multiple mod-
ules that are applicable to large dataset manipulation: SparkSQL for
dataset analysis, ML for machine learning, GraphFrames for net-
work graphs manipulation and Spark streaming for the processing
of streamed data – which is critical for continuous processing.

The second tool is Knime [5] which is an Integrated Developing
Environment (IDE) based on the Java programming language, with
multiple nodes available for data mining and machine learning. Kn-
ime has been considered one of the leaders in the popular Gartner
data science quadrant [4]. Knime is open source and freely available
for multiple operating systems, including Microsoft Windows, Ap-
ple macOS and various Linux distributions. The large availability of
machine learning models enable the researchers rapid prototyping
and testing of approaches.

In terms of hardware, the High-Performance Computing (HPC)
environment available to researchers at Compute Canada is used.
Compute Canada [3] is a consortium of 18 Canadian universities
that joined forces to offer researchers in all disciplines large scale
computing power, through large computer clusters running Linux
distributions. Researchers can use the resources in batch or inter-
active jobs, depending on the characteristics of the tasks. Please
refer to Figure 7 for a technology stack architectural view of the
experimental system.

Figure 7: Technology stack experimental architecture

There are four potential data sources in the very large dataset
studied: authentications, Domain Name Service (DNS) calls, net-
work flows and processes or programs used. These four datasets
provide rich information that can enable the creation an effective
feature set. Based on domain knowledge, and with the intention of

a parsimonious model, the authentication log is deemed sufficient
for the detection of the insider’s IS misuse. The rationale is that
a compromised user will try to authenticate to different systems,
or in an uncharacteristic way. By analyzing the variance in the
authentication, a machine learning model shall enable detection of
potential IS misuse.

The authentication data use for this research exists as events
in sequence on a per-second basis. Understanding the context of
using IS for the delivery of work in organizations, we make the
determination that the user behavior data may be analyzed at the
daily level. Regular behavior of IS users present a daily pattern that
can be used for the purposes of finding what ’normality’ means.
Thus, we convert the seconds to their equivalent of a date (we select
the first second to start on January 1, 2018 for simplicity).

With the daily data, we determine the weekdays and weekends.
This information is not originally labeled in the dataset, and it
is essential to the analysis of the variance. We remove the data
pertaining to the weekends as it may create noise when compared
with regular work days with higher authentication volume.

We proceed to the determination of missing and invalid data.
Some of the authentication data is incomplete, represented by the
’?’ sign. Upon inspection of the data and reviewing the sources,
we assess that the data follows a Missing Completely At Random
(MCAR) pattern. These records are deemed to be an ignorable
missingness situation [18], and therefore a listwise deletion method
is employed, with the complete row being deleted if any of the
variables had missing data. The resulting dataset has 583,350,822
records. We further filter the dataset to include only values for
user authentications, ignoring the computer authentications, as our
focus is on characterizing user behaviors. This means selecting in
the user field values starting with the letter ’U’. Thus, we transform
1.051 billion records into a significantly more manageable 325,771
observations, each corresponding to a user authentication event
taking place.

The data is now suitable for the feature construction.

4.2 Feature engineering
The ultimate objective of the experiment – identification of insider’s
threats – as well as the structure and nature of the data guide the
feature engineering activities.

The data has been pre-processed to ensure we have valid obser-
vations that contain the knowledge we seek. We have data points
that are directly comparable to one another since we defined the
time unit of comparison to be a workday. The features we concep-
tualize need to exist in the hypothesis space we face. Thus, we need
to find features that represent the user behaviors when abstracted
to the time unit chosen.

The question we need to pose now is how to characterize what
a user does in a day. We can further specify a user’s behavior by
interpreting the data as a sequence of events. Analyzing the authen-
tications data, we can see that the information provides multiple
value-pairs. One authentication event contains the source and des-
tination computers, source and destination domains and source
and destination users. This implies that the information is a flow
record between two nodes. We observe that for the same user, any
given node may appear as source or destination at different times.
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In fact, when aggregating the multiple records for a specific user, it
is possible to identify sequences of flows as the user authenticates
from a node to a second one, and then to a third or more. This is
the equivalent of a graph.

In its most basic form, graph analysis – sometimes referred
to as network analysis – is an extension in the interpreting of
relationships between entities. This is better conceptualized with
an example: social networks. One of the most powerful applications
of graph analysis is typified by the search for influencers in groups
of individuals. In social networks such as Facebook or Twitter, each
user is connected in one or multiple ways to several other users or
entities. Colloquially, being a ’friend’ on Facebook means that you
are somewhat connected to your friends’ friends. This dynamics
create a complex network that has valuable information about users
and their IS behaviors. Figure 8 illustrates the sequences that any
given user may perform in a day. A user may log into computer
3 in the morning, and then authenticate to computers 1, 2 and 4
afterwards. Since many different users may use the same computers
– such as authenticating to their email server – we need a way to
differentiate the different sequences (i.e. graphs) for each user. We
can use the concept of attributes in the graph to maintain a virtual
separation between the graphs of every user. We define a vertice in
the graph as a node with three attributes: the user, the computer
and the date. In terms of the edges, we can also articulate attributes
that are relevant to the authentication event, such as its success or
failure.

Figure 8: Simple feature graph.

The depiction shows a typical path that a user may take when
using IS in the organization. She may turn on the computer, log
into her first system of the day (computer three), and as the day pro-
gresses she will access other computers in the network. Sometimes
she will log into the other computers directly, but most probably
she will authenticate in a consistent sequence. At the end of the
day the user will have virtually created an ’authentication path’ of
her IS activity throughout the day. Although any user’s graph may
differ from day to day, it is human nature to perform the same tasks
in the same sequence consistently. It is also logical to assume that
different users will follow different graphs given their job duties,
preferences or efficiency in completing tasks. Given our focus on
user behaviors and our domain knowledge, authentication graphs
constrained by day can explain well the behavior of any given user.
As explained previously, only weekdays will be used given the high
probability of significant differences between user’s activities on

a weekday vs. a weekend. Both edges and vertex have attributes
that can further enrich the behavior definitions. Each edge may
be a successful or a failed authentication event, or be performed
in the morning or afternoon. Conversely, a vertice can contain
the attributes of certain computers, such as being a server or a
workstation.

We proceed to the formulation and estimation of the first set of
features, as it is depicted in Figure 9. The data is aggregated at the
daily level, enabling the analysis of normative events in a given
date.

Feature 1: NmbDestinationUsers. On a relatively complex infor-
mation landscape, there will be multiple inter-connected systems
that may or may not share a common set of authentication creden-
tials. It is quite normal that the architecture requires users to log
into different systems with different usernames or passwords. Thus,
we define this indicator variable as capturing how many different
user names any specific user has logged in as, on any system, in
a day. A typical user will likely use only one user name (its own),
with multiple users potentially signaling an abnormal pattern. How-
ever, it is important to recognize that some users – specially power
users or system administrators – may have several user names. The
comparison shall be performed to a set of peers, or with the user
himself.

Feature 2: NmbSourceComputers. This variable captures how
many different computers the user has logged from. A typical user
will use only her own computer.

Feature 3: NmbDestinationComputers. This variable captures how
many different computers the user has logged into. This is espe-
cially applicable to programs that run out of different servers (like
web systems). Every time a user logs into the website, it is logged
into the computer servers that host the application. A potential
insider’s threat may be marked by an unusual number of destina-
tion computers as the threat agent tries to access or misuse other
systems.

Feature 4: NmbAuthenticationTypes. This variable represents the
number of different authentication types that are being used by
the user. This number shall be consistently small as the type of
authentication shall not vary much during the regular use of an IS.

Feature 5: NmbSuccessOrFailure. With this feature we articulate
whether the user has had only success events in its daily login
activities (which can be considered normal) or if she has had failed
events in any given day, signaling a potential threat.

Feature 6: NmbSourceUserDomain: A domain can be described
as a defining set of objects that any given user interacts with or
has access to. It is common that a user is in a certain domain as
the source, but authenticates to a system that resides in a different
domain. This variable captures the number of originating domains
that the user is attached to when performing the login action.

Feature 7: NmbDestinationDomain. This variable captures the
destination domain for the system that the user is authenticating
into.

The above seven features correspond to the baseline markers
of user activities that may aid in the determination of abnormal
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Figure 9: Processing of the data into basic features: original record in the dataset, and its transformation into basic features
for user U101

behavior. In addition to this, it is important to perform feature
engineering to conceptualize variables that are a result of a chain
of events.

These networks can be immensely complex, given the fluid and
varying nature of relationships between entities. Furthermore, the
computing power needed to manage and query graphs is significant,
driving the need to use Big Data tools for its analysis. The process
depiction is in Figure 10.

Leveraging graph analysis concepts, we construct the following
features for the analysis of user’s behavior:

Feature 8: cnt_comp_degrees. In a graph network, the degrees for
a specific vertice (a computer in this research) captures the number
of edges (authentication events) that depart or end in it. With these
feature, we capture how many computers have participated in
authentication events (i.e. have edges attached to it) in any given
day by the user.

Feature 9: cnt_comp_indegrees. In graph analysis, in-degrees per-
tain to the number of destination edges attached to a vertex. With
this feature, we capture how many computers any given user, on
any weekday has with edges terminating in it. In other words, it is
the number of destination computers that follow the authentication
path for the user.

Feature 10: cnt_comp_outdegrees. In graph analysis, the number
of outdegrees per vertice corresponds to the number of edges that
depart for any given computer in an authentication path. In the
language we have used in this study, we can conceptualize this
feature as the number of source computers used by any given user
on any given day.

Feature 11: min_degrees. This feature captures the minimum
number of edges that any given vertex has in the authentication
graph. In other words, the minimum number of authentication
events in any given computer used by the user in the day.

Feature 12: max_degrees. This variable captures the maximum
number of authentication events that any computer used by the
user had on that day.

Feature 13: avg_degrees. This feature captures the average num-
ber of authentication events the computers used by the user had in
the weekday.

Feature 14: sum_degrees. This feature aggregates all the authen-
tication events that took place when the user was in the IS on a
given day.

Feature 15: min_indegrees. This value captures the minimum
number of events pertaining to a computer being the destination
of the authentication.

Feature 16: max_indegrees. This is the maximum number of
events for any given computer being the source node for the au-
thentication.

We complete the feature set with calculations on the average,
sum, min and max for the indegrees and outdegrees of the authen-
tication graph.

We have now a set of features that can be used for the detection
of the insider’s misuse. Although the focus of this study is not the
detection process, we describe at a high level how the transformed
feature dataset is used.

If the architecture of the detection system uses supervised learn-
ing, each of the records (with composite primary key being day and
user) shall be labeled as a normal or anomalous record. In the par-
ticular case of this experiment, we do have access to the users that
were compromised, as well as the days in which the misuse event
took place. Using this information, all the records in the feature
dataset are labeled appropriately. This labeled feature set can then
be split in training and test partitions, and used in a computational
model such as logistic regression or neural networks. The model
learns from the training set, and with the test set we can assess
how good the classification exercise performed. We perform this
process in our system since our focus is on the feature engineering,
so our intent is to demonstrate that the feature set does allow a
computational model to predict better than a random draw.

For most applied cases, it is rather improbable that the historical
data is labeled. If this is the case, unsupervised learning is required.
Multiple computational methods can be used such as multivariate
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Figure 10: Processing of the data into graph features.

regressions, outliers analysis, pattern mining and Principal Com-
ponent Analysis (PCA). These methods are out of scope of this
experiment.

5 EXPERIMENTATION
We now proceed to use the feature set for the detection of the
threat in a supervised computational model. Our research question
pertains to the ability of detecting a user as compromised given the
set of features extracted. Each record in the feature set represents
a user’s behavior on any given day. More specifically, we have
spatial features for every user in each day. We preform one last
transformation to obtain one record per user and capturing all the
markers of the behavior. Since we have 42 weekdays in the data, we
can have one variable per weekday per spatial feature. The process
transposes the feature dataset from the original matrix of 325,771
events x 22 spatial features to a 11,255 users x 924 spatio-temporal
features. Please refer to Figure 11.

We add one last field to the feature set: "whether the user was
compromised or not". This information is available in the source
dataset. We proceed to split the feature set in a training and a test
partition. We train a logistic regression model with the training
data and test the results with the test data.

As it was explained in the background section, the relationship
between specificity and sensitivity may be displayed using a Re-
ceiver Operating Characteristic (ROC) curve. The ROC plots the
sensitivity vs. the (1-specificity) of a classifier. The Area Under the
Curve (AUC) in a ROC curve ranges from 0 (completely deficient)
to 1 (perfect classifier) [7].

The classification exercise is inherently a supervised activity.
This means that the data shall have the class for each observation,
so the machine learning model can learn what are the characteris-
tics that an anomalous observation possesses. From this perspective,
it is not a true anomaly detection mechanism, but rather a way to
test that the feature set used is valid and represents the behaviors
exhibited by any given user. In a typical classification exercise, the

historical data is divided in a training and a testing dataset. The
training set is used to find the parameters of the model and the test
set is used to evaluate how well the model performs the classifi-
cation. From a conceptual perspective, the classification is based
on a known signature of what constitutes an abnormal behavior.
A signature-based model has theoretically less false positives, but
may have significant challenges in identifying insider’s misuse of
IS when the attacker uses a new, unexpected behavior for which
there is no signature. For the purposes of a supervised classifi-
cation exercise, the data is divided in training (80%) and testing
(20%) using stratified sampling to ensure the few compromised user
observations are properly distributed between the two sets.

Logistic Regression. the classic parametric classifier uses logistic
regression as its theoretical underpinning. It is related with the
process of linear regression, but instead of predicting a value, the
dependent variable is a function of it named the logit [7].

We use logistic regression to process the features captured for
each of the users. Logistic regression is especially sensitive to col-
inearity, so a correlation filter is applied prior to the training of the
model. Using the model we obtain the ROC curve depicted in Figure
12. The AUC is 82.79%, with this classifier performing significantly
better than the random draw.

6 DISCUSSION
The increasing availability of large datasets have led to an explosion
of machine learning applications in a multitude of domains. The
phenomena of the insider’s threat in information systems is one of
the areas in which these technologies can create significant value,
since the user behaviors are captured in large log files. However,
before this data can be effectively used for this purpose, the fea-
ture engineering process is critical for the articulation of relevant
variables that can enable a successful analysis.

In this study we presented a set of features that capture the user
behavior, and that can be analyzed for the purposes of detecting
information systems’ misuse. We leverage the existence of a very
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Figure 11: Final transformation of spatial features into spatio-temporal features.

Figure 12: ROC curve for the logistic regression on the large
dataset from Los Alamos laboratory.

large, anonymized dataset to experiment with the approach we
posit. We cleanse and aggregate the authentication events data, and
from the resulting dataset we extract the features we believe are
meaningful markers of user behavior in an IS.

The final stage of our experiment is to prove that the features
selected do contain the information that would enable the detection
of insider’s threat.We do this through the use of a logistic regression
classifier since the large dataset contains ground truth – labeled
data that can be used to train the classifier.

Through the ROC curve displayed on Figure 12 we confirm that
the features permit the detection of IS misuse: the AUC is 82% when
compared with a random draw of 50%, significantly improving the
results when compared to a random selection when looking for
anomalous behavior.

It is important to note that the logistic classifier is used in this
experiment since the focus is on the feature engineering aspects
and not on the detection process. The logistic classifier is simple
to implement and provides unambiguous results. However, in real
world applications it is unlikely that such a system would be used
since the existence of labeled data representing all potential user

behaviors is rather improbable. An insider’s threat detection sys-
tem will likely need an anomaly detection approach in which the
anomalous signature is continuously updated to be able to react to
new threats.

A follow-up experiment to the one presented may consist of
using multiple detection methods departing from the features ex-
tracted. The focus would be on the detection process in contrast
with this experiment that concentrates on the feature engineering
aspects. In addition to this, the use of deep learning on the features
extracted may be a good complementary work to explore since the
identification of patterns in the data is a strength of this technology.

The importance of domain knowledge in the conceptualization
and calculation of features cannot be overstated. Features that can
be efficiently and effectively used for the insider’s IS misuse detec-
tion require strong familiarity with the area of application, and a
rigorous methodology that produces information – and ultimately
knowledge – from data.

REFERENCES
[1] [n. d.]. Apache Spark™ - Unified Analytics Engine for Big Data. https://spark.

apache.org/
[2] [n. d.]. Los Alamos National Lab: National Security Science. https://www.lanl.

gov/
[3] 2018. Compute Canada | Calcul Canada. https://www.computecanada.ca/
[4] 2018. Gartner Recognizes KNIME as a Leader in Data Science and Ma-

chine Learning Platforms | KNIME. https://www.knime.com/about/news/
gartner-recognizes-knime-as-leader-in-data-science-and-machine-learning-platforms

[5] 2018. KNIME - Open for Innovation. https://www.knime.com/
[6] Alexander D. Kent. 2015. Comprehensive, Multi-Source Cyber-Security Events.

https://doi.org/10.17021/1179829
[7] Peter C Bruce, Galit Shmueli, and Nitin Patel. 2014. Data Mining for Business Ana-

lytics. Vol. 9781461476. 1–166 pages. https://doi.org/10.1007/978-1-4614-7669-6
[8] Pedro Domingos. 2012. A few useful things to know about machine learn-

ing. Commun. ACM 55, 10 (2012), 78. https://doi.org/10.1145/2347736.2347755
arXiv:cs/9605103

[9] Guozhu Dong and Huan Liu. 2018. Feature engineering for machine learning
and data analytics. c (2018).

[10] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog. Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security - CCS ’17 (2017), 1285–1298. https://doi.org/10.1145/3133956.3134015

https://spark.apache.org/
https://spark.apache.org/
https://www.lanl.gov/
https://www.lanl.gov/
https://www.computecanada.ca/
https://www.knime.com/about/news/gartner-recognizes-knime-as-leader-in-data-science-and-machine-learning-platforms
https://www.knime.com/about/news/gartner-recognizes-knime-as-leader-in-data-science-and-machine-learning-platforms
https://www.knime.com/
https://doi.org/10.17021/1179829
https://doi.org/10.1007/978-1-4614-7669-6
https://doi.org/10.1145/2347736.2347755
http://arxiv.org/abs/cs/9605103
https://doi.org/10.1145/3133956.3134015


CASCON’18, October 2018, Markham, Ontario, Canada Lopez, E. and Sartipi, K.

[11] Song Feng, Ritwik Banerjee, and Yejin Choi. 2012. Syntactic Stylometry for
Deception Detection. Technical Report. 8–14 pages. www.tripadviser.com,

[12] Isabelle. Guyon. 2006. Feature Extraction. Vol. 207. 778 pages. https://doi.org/10.
1007/978-3-540-35488-8

[13] Heiko Hoffmann. [n. d.]. Kernel PCA for Novelty Detection. Technical Report.
http://heikohoffmann.de/documents/hoffmann{_}kpca{_}preprint.pdf

[14] Thomas Hofmann. 1999. Probabilistic Latent Semantic Indexing. Technical Report.
http://cis.csuohio.edu/{~}sschung/CIS660/PLSIHoffman.pdf

[15] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning.
Nature 521, 7553 (may 2015), 436–444. https://doi.org/10.1038/nature14539
arXiv:arXiv:1312.6184v5

[16] Ron Lieber. 2017. How to Protect Yourself After the Equifax Breach.
, 10 pages. https://www.nytimes.com/interactive/2017/your-money/
equifax-data-breach-credit.html

[17] H P Luhn. [n. d.]. The Automatic Creation of Literature Abstracts*. Technical
Report. http://www.di.ubi.pt/{~}jpaulo/competence/general/{%}281958{%}29Luhn.
pdf

[18] Lawrence S. Meyers, Glenn Gamst, and A. J. Guarino. [n. d.]. Applied multivariate
research : design and interpretation. 978 pages. https://us.sagepub.com/en-us/
nam/applied-multivariate-research/book246895

[19] Nicole Pelroth. 2017. All 3 Billion Yahoo Accounts Were Affected by 2013 Attack
- The New York Times. https://www.nytimes.com/2017/10/03/technology/
yahoo-hack-3-billion-users.html?{_}r=0

[20] Animesh Patcha and Jung Min Park. 2007. An overview of anomaly detection
techniques: Existing solutions and latest technological trends. Technical Report 12.
MIAMI UNIV CORAL GABLES FL DEPT OF ELECTRICAL AND COMPUTER
ENGINEERING. 3448–3470 pages. https://doi.org/10.1016/j.comnet.2007.02.001

[21] Why Read and This Report. 2016. Hunting Insider Threats. (2016).
[22] Ron Lieber and Stacy Cowley. 2017. Trying to Stem Fallout From Breach, Equifax

Replaces C.E.O. - The New York Times. https://www.nytimes.com/2017/09/26/
business/equifax-ceo.html

[23] Scott Shane and Andrew Lehren. 2010. Leaked Cables Offer Raw Look at U.S.
Diplomacy. https://www.nytimes.com/2010/11/29/world/29cables.html

[24] Steven Erlanger. 2016. Edward Snowden Says Dis-
closures Bolstered Individual Privacy - The New York
Times. https://www.nytimes.com/2016/09/17/world/europe/
edward-snowden-defending-his-patriotism-says-disclosures-helped-privacy.
html

[25] Bhavani Thuraisingham. 2018. Big Data Analytics with Applications in Insider
Threat Detection.

[26] Bimal Viswanath, M Ahmad Bashir, Max Planck, Software Systems, Mark Crov-
ella, Saikat Guha, Krishna P Gummadi, and Alan Mislove. 2014. Towards Detect-
ing Anomalous User Behavior in Online Social Networks. In the 23rd USENIX Secu-
rity Symposium. 223–238. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/viswanath

[27] Merrill Warkentin and Robert Willison. 2009. Behavioral and policy issues
in information systems security : the insider threat. Information Journal of
Information Systems 18, 2 (2009), 101–105. https://doi.org/10.1057/ejis.2009.12

www.tripadviser.com,
https://doi.org/10.1007/978-3-540-35488-8
https://doi.org/10.1007/978-3-540-35488-8
http://heikohoffmann.de/documents/hoffmann{_}kpca{_}preprint.pdf
http://cis.csuohio.edu/{~}sschung/CIS660/PLSIHoffman.pdf
https://doi.org/10.1038/nature14539
http://arxiv.org/abs/arXiv:1312.6184v5
https://www.nytimes.com/interactive/2017/your-money/equifax-data-breach-credit.html
https://www.nytimes.com/interactive/2017/your-money/equifax-data-breach-credit.html
http://www.di.ubi.pt/{~}jpaulo/competence/general/{%}281958{%}29Luhn.pdf
http://www.di.ubi.pt/{~}jpaulo/competence/general/{%}281958{%}29Luhn.pdf
https://us.sagepub.com/en-us/nam/applied-multivariate-research/book246895
https://us.sagepub.com/en-us/nam/applied-multivariate-research/book246895
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html?{_}r=0
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html?{_}r=0
https://doi.org/10.1016/j.comnet.2007.02.001
https://www.nytimes.com/2017/09/26/business/equifax-ceo.html
https://www.nytimes.com/2017/09/26/business/equifax-ceo.html
https://www.nytimes.com/2010/11/29/world/29cables.html
https://www.nytimes.com/2016/09/17/world/europe/edward-snowden-defending-his-patriotism-says-disclosures-helped-privacy.html
https://www.nytimes.com/2016/09/17/world/europe/edward-snowden-defending-his-patriotism-says-disclosures-helped-privacy.html
https://www.nytimes.com/2016/09/17/world/europe/edward-snowden-defending-his-patriotism-says-disclosures-helped-privacy.html
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/viswanath
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/viswanath
https://doi.org/10.1057/ejis.2009.12

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Machine Learning
	2.2 Success Metrics in Binary Classification Models
	2.3 Feature Engineering
	2.4 Learning Approaches for Insider Threat Detection

	3 Dataset
	4 Approach
	4.1 Architecture
	4.2 Feature engineering

	5 Experimentation
	6 Discussion
	References



