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 A B S T R A C T

The detection of abnormalities in Activities of Daily Living (ADLs) has garnered significant attention in recent 
studies, with many employing deep learning techniques. This paper introduces a novel approach to analyzing 
ADL sequences, aimed at identifying meaningful deviations from an individual’s routine behavior. Our method 
offers several benefits for older adults, including timely care, early detection of health conditions to prevent 
deterioration, reduced monitoring burden on family members, and enhanced self-sufficiency without disrupting 
daily activities. We propose an Inverse Reinforcement Learning (IRL)-based method to detect behavioral 
abnormalities in older adults by analyzing ADL sequences. Our approach models the problem of abnormality 
detection in behavior sequences as a Markov Chain model. By applying the IRL method, we infer the reward 
function that motivates individuals to perform ADL from observed behavior trajectories. This inferred reward 
function is then used to identify potential behavior abnormalities through a threshold-based mechanism, where 
sequences with rewards below a specified threshold are flagged as potential abnormalities.

1. Introduction

As the world’s population ages, there is an increasing need to 
develop technologies that can support healthy aging and enable older 
adults to live independently in their homes for as long as possible. One 
of the challenges of aging is that it often leads to changes in behavior, 
which can be early indicators of cognitive decline or other health issues. 
Detecting these changes in behavior can help caregivers and healthcare 
professionals intervene early, potentially improving health outcomes 
and quality of life for older adults.

Activities of Daily Living (ADL) data, which includes information 
about daily activities such as eating, sleeping, and personal hygiene, 
can be used to track changes in behavior over time. However, de-
tecting behavior changes from ADL data can be challenging due to 
the complexity and variability of human behavior. The monitoring 
of ADL has been promoted by advancements in sensor technologies. 
Decreased ADL performance has been found to be associated with 
the progression of chronic diseases, including cognitive impairment, in 
older adults (Stineman et al., 2011). A study comparing two groups of 
older adults found that the activity maps of dementia patients displayed 
disorganized behavior patterns, and there was a notable difference in 
heterogeneity between the healthy group and the group with the dis-
ease (Urwyler et al., 2017). Therefore, the study of life patterns in older 
persons can be used to quantify changes relevant to ADL in the course 
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of diseases. Although there is plenty of research on ADL recognition 
and ADL impairment detection, studying irregularities in the pattern 
of daily life has not been studied enough. The existing research on 
behavior anomaly detection in older adults has primarily focused on 
point anomalies, neglecting the potential of utilizing temporal features 
to their fullest extent. While these studies have successfully identified 
anomalies where individual data points deviate from the norm, they 
have overlooked collective anomalies that can only be detected by an-
alyzing the sequential nature of the data. Moreover, some investigations 
have been limited to identifying abnormalities within specific activity 
classes, failing to account for higher-level analysis of activities. Thus, 
it is crucial to consider appropriate behavior granularity in developing 
effective anomaly detection methods. Additionally, it is desirable for 
the method to offer a generalizable solution that can be adjusted for 
different target users within a reasonable timeframe, enabling it to 
leverage pre-learned models and accelerate the learning process.

In this work, we propose an IRL-based model for behavior abnor-
mality detection in older adults, where the reward function is inferred 
from the observed behavior of an expert, which is called trajectories. 
To be specific, observed sequences of ADL performed by an individual 
are fed into the model as trajectories to learn the reward function.

The proposed model takes advantage of Inverse Reinforcement 
Learning for training the agent to learn the behavior of the older 
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adult through a semi-supervised task. Inverse Reinforcement Learning 
is a machine learning technique that has shown promise in modeling 
human behavior and inferring underlying motivations (Lin & Cook, 
2020). Inverse reinforcement learning is particularly beneficial in cases 
where defining the reward function is challenging due to its complexity. 
Additionally, the reward function has been demonstrated to exhibit 
greater transferability compared to the policy function (Russell, 1998), 
leading to the development of more generalizable models. Unlike super-
vised methods that require labeled data for training, IRL-based models 
learn from trajectories that are observations of an expert performing 
the task. The proposed model learns a reward function that captures 
the underlying motivations behind the observed ADL data and uses 
this function to detect changes in behavior. The model can adapt to 
changes in behavior over time, making it well-suited for detecting early 
indicators of cognitive decline or other health issues.

The main contributions of this research are as follows: (1) A novel 
representation of the abnormality detection in ADL sequences as a 
higher-order Markov Chain model. (2) A semi-supervised IRL-based 
model for detecting behavior changes in older adults from sequences 
of ADL data. (3) An evaluation of the proposed model on a real-world 
dataset of ADL data from older adults.

The rest of the paper is structured as follows: Section 2 reviews re-
lated work in the field. Section 3 provides background on the methods 
we used. In Section 4, we introduce our proposed approach, followed 
by the presentation of our results in Section 5. Finally, we conclude the 
paper in Section 6.

2. Related works

Abnormal behavior can be defined as ‘‘actions that are unexpected 
and often evaluated negatively because they differ from typical or 
usual behavior’’ (Durand & Barlow, 2003). Because the concept of an 
anomaly is difficult to define precisely and is closely tied to patient be-
haviors and the types and course of pathologies, artificial intelligence, 
and more specifically machine learning techniques, have been used to 
learn to recognize those anomalies.

Scholars have used machine learning methods extensively to ana-
lyze ADL with the goal of providing on-time care and predicting older 
adults’ health conditions. Many studies benefit from the availability 
of datasets for daily activities, including the use of machine learn-
ing methods for predicting/detecting anomalous behavior (Arifoglu & 
Bouchachia, 2019a; Freitas et al., 2022; Lotfi, Langensiepen, Mahmoud, 
& Akhlaghinia, 2012; Riboni, Bettini, Civitarese, Janjua, & Helaoui, 
2015; Suryadevara, Mukhopadhyay, Wang, & Rayudu, 2013).

Fahad and Tahir (2021) propose a method for detecting behavior 
anomalies by taking into account two types of abnormality: missing or 
extra sub-events in an activity and unusual durations of the activity. 
They trained an H2O model to classify events using labeled activities 
(normal, anomaly). The main problem with such supervised models is 
that they must be trained using labeled data, which is time-consuming 
and difficult to generate.

Casagrande, Tørresen, and Zouganeli (2018) have used recurrent 
neural networks to forecast the future values of the activities for each 
sensor. When abnormal behavior is anticipated in the near future, the 
caregiver is informed using the projected values. Investigations into 
data gathering, classification, and prediction were conducted in actual 
homes with dementia-affected elderly residents.

In assisted living settings, temporal characteristics of ADL are taken 
into consideration to forecast the next activity. Nazerfard (2018)
presents an association rule mining module that identifies associations 
among ADL that are grouped according to the start time and duration 
of the related ADL. The sequence of the activities is also taken into 
account.

Karakostas, Briassouli, Avgerinakis, Kompatsiaris, and Tsolaki (2016) 
present an anomaly detection approach in which the predicted user ac-
tivity is represented by a task model. The predicted and actual behavior 

are then compared to see if any variance (anomaly) has occurred. The 
problem with such model-based anomaly detection approaches is that 
they fail to detect anomalies that have not previously occurred. Ismail, 
Hassan, and Alsalamah (2019) propose a context-aware framework for 
learning and predicting human behavior. Behavior contexts such as 
weekdays and the time of day are collected from residents’ real-life 
data to improve the accuracy of activity prediction.

Cook and Schmitter-Edgecombe (2009) have developed algorithms 
for automatically learning separate Markov models for each of the five 
classes of activity (Telephone Use, Hand Washing, Meal Preparation, 
Eating and Medication Use, and Cleaning). These models are used to 
both categorize the activities that are carried out in smart homes and 
to identify errors and inconsistencies in those activities.

Krishna, Jain, Mehta, and Choudhary (2018) proposed a Long Short-
Term Memory (LSTM)-based method for detecting anomalies in daily 
activity sequences, as well as a comparison of the proposed method 
with the Hidden Markov Model, which demonstrates comparable re-
sults for the LSTM model. Moallem, Hassanpour, and Pouyan (2019) 
presented an anomaly detection method in smart homes based on deep 
learning. They used binary sensor data to train a predictor model, 
which is a recurrent neural network, to predict which sensors will turn 
on/off and how long the event will last.

Arifoglu and Bouchachia (2019b) examined the problem of
dementia-affected older individuals’ activity recognition and inappro-
priate behavior detection. Given the difficulty in getting real-world 
data, the research first proposes an approach for creating synthetic 
data that reflects on some behavioral issues of people with dementia. 
The second part of the study looked at Convolutional Neural Networks 
(CNNs), which can be used to predict patterns in activity sequences 
and identify abnormal behavior associated with dementia. The iden-
tification of activities is regarded as a sequence labeling issue, and 
anomalous behavior is highlighted based on a departure from expected 
patterns. Additionally, the effectiveness of CNNs is evaluated in com-
parison to cutting-edge techniques like Conditional Random Fields 
(CRFs), Hidden Semi-Markov Models, Hidden Markov Models, and 
Naive Bayes (NB). The outcomes show that CNNs are in a competitive 
position with the listed state-of-the-art methods.

Shang, Chang, Liu, Zhao, and Roy (2020), introduced a mechanism 
for Feature-based Implicit Irregularity Detection (FIID) that extracts 
regularity features through unsupervised learning and produces the 
likelihood of implicit irregularity. According to the proposed FIID, the 
regular activities that meet the time-regular and happen-frequently 
qualities are what define everyday behaviors as being regular. The im-
plicit irregularity probability of the daily health state is then calculated 
using a multidimensional feature space that is built using these features.

Lago, Jiménez-Guarín, and Roncancio (2017) introduced contex-
tualized behavior patterns, a long-term behavior model that takes 
context-related variability into account and then codifies the key ideas 
relating to activities in Ambient Assisted Living. This study shows that 
using semantic similarity makes it easier to detect behavioral changes.

Previous research has explored the use of deep learning models for 
abnormality detection in Activities of Daily Living (ADL) sequences. 
Notably, Akbari and Sartipi (2022) leveraged Bi-Directional Encoder 
Representations from Transformers (BERT) to analyze older adults’ ADL 
sequences for behavior change detection. Their study highlighted the 
fine-tuning capabilities of Transformers, making them well-suited for 
supervised tasks even when large labeled datasets are unavailable. 
They emphasized the significance of transfer learning, showing that 
fine-tuning a pre-trained model for a new resident enhances detec-
tion performance. Their case study on a two-resident ADL dataset 
with a sequence length of 128 demonstrates empirical support for the 
effectiveness of Transformer-based approaches in abnormality detec-
tion scenarios. However, the model’s requirement for longer sequence 
lengths imposes a limitation, necessitating an extended history of ADL.

While there are plenty of studies on behavior anomaly detection in 
older adults, temporal features are not utilized to their full potential. 
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Most of the studies reflect on point anomalies which is when an 
individual data point is different from the rest of the data. However, 
collective anomalies that can only be identified by considering the 
sequential features of data are not explored well. Some works are 
limited to finding abnormalities within activity classes, while there 
can be abnormalities that can only be detected by a higher-level 
analysis of activities. Therefore, appropriate behavior granularity needs 
to be considered. It is also important for the method to present a 
generalizable solution that can be tuned for different target users in a 
reasonable time. This feature would allow the method to start learning 
the behavior patterns from a pre-learned model as opposed to learning 
from scratch.

To address the above-mentioned issues, we hypothesize that deep 
learning RL-based (Reinforcement Learning) methods that have been 
proven effective in analyzing time series data can also be effectively 
applied in analyzing ADL data streams for detecting deviations from 
normal behavior. We propose considering temporal features of behav-
ior to detect collective abnormalities in older adults’ behavior. This 
research considers inter-activity dependencies to understand behavior 
routines. We also apply state-of-the-art RL-based methods to minimize 
the need for labeled data. The suggested method will also address 
the ‘‘cold start’’ issue, in which the algorithm is unable to make any 
conclusions about residents for whom it has not yet received sufficient 
training data.

3. Background

This section provides an overview of two key concepts that underpin 
our proposed approach to behavior abnormality detection in older 
adults, i.e., Markov Decision Process (MDP) and Inverse Reinforcement 
Learning. By providing a deeper understanding of these concepts, we 
can better appreciate the technical and theoretical foundations of our 
proposed approach and its potential applications in the field of smart 
home care.

3.1. Markov decision process and reinforcement learning

A process can be considered a Markov Decision Process if the deci-
sion to be taken depends only on the current state of the environment. 
In other words, regardless of the previous states, the agent should be 
able to take the proper action (make a decision) at any point in time.

Reinforcement Learning (RL) problems can be formulated as Markov 
Decision Processes. An MDP consists of the following basic elements: a 
set of states S, a set of actions A, a transition function T, and a reward 
function R.

A state represents the situation of the agent within the environment. 
In each state, the environment makes a collection of actions available to 
the agent (an action space) from which the agent can choose an action. 
The agent interacts with the environment through these actions, and 
in response to the agent’s action, the state can change. The transition 
function determines the state that the agent will arrive in after taking 
an action.

As a part of the interaction between the agent and the environment, 
upon the agent’s action, the environment passes a reward on to the 
agent using a reward function. The reward provides feedback to the 
agent about its performance, which can positively or negatively rein-
force the agent’s behavior. Guiding the agent through feedback can be 
done by providing either an immediate reward (discount factor of 0) 
or a discounted reward (0 < discount factor < 1).

The ultimate goal of the agent is to take actions that maximize 
the accumulated reward over a sequence of actions. The policy is 
referred to as a function that determines what action to take in order to 
maximize the accumulated discounted reward given the current state 
of the environment.

3.2. Inverse reinforcement learning

Inverse Reinforcement Learning (IRL) is a subfield of machine learn-
ing that aims to learn reward functions from expert demonstrations. 
Unlike traditional reinforcement learning, which assumes that the re-
ward function is known in advance, IRL seeks to infer the reward 
function from observed behavior data. This makes IRL particularly 
useful in settings where the reward function is not well-defined or is dif-
ficult to specify in advance. Russell (Russell, 1998) made a suggestion 
that IRL may be used to provide computational models of difficult-to-
specify behaviors in humans and animals. The goal of IRL is to model an 
agent’s preferences based on observed behavior, avoiding the need to 
manually specify the reward function. The interaction of the observed 
agent with its environment is typically attributed to a Markov decision 
process, the solution of which is a policy that maps states to actions. 
Because the true reward function of this MDP is not directly observable, 
IRL assumes the agent is following an (unknown) optimal policy, and 
then works backwards from the observed state–action trajectories to 
recover the reward function that best explains that optimal behavior.

Formally, the goal of IRL is to find a reward function 𝜔(𝜀, 𝜗) that 
explains the observed behavior of an agent in a given environment. The 
agent’s behavior is typically represented as a sequence of state–action 
pairs, denoted as 𝜛 = (𝜀1, 𝜗1,… , 𝜀𝜚ε1, 𝜗𝜚ε1, 𝜀𝜚 ), where 𝜀𝜍 is the state at 
time 𝜍 and 𝜗𝜍 is the action taken by the agent in that state. The objective 
of IRL is to find a reward function that maximizes the likelihood of the 
observed behavior data:
max
𝜑

𝛻 (𝜛⌋𝜑)
To solve this optimization problem, IRL algorithms typically rely on 

the Maximum Entropy IRL framework, which assumes that the reward 
function is a linear combination of features of the state–action pairs:

𝜔(𝜀, 𝜗) =
𝜕⌈
ℵ=1

ℶℵℷℵ(𝜀, 𝜗)

where, ℷℵ(𝜀, 𝜗) represents the ℵth feature of the state–action pair, and 
ℶℵ represents the weight associated with that feature. The goal of the 
IRL algorithm is to learn the weights ℶℵ that best explain the observed 
behavior data.

The Maximum Entropy IRL framework also assumes that the agent’s 
behavior is optimal with respect to the learned reward function. This 
means that the agent’s actions are chosen to maximize the expected 
reward through exploring diverse alternatives.

To learn the weights ℶℵ, IRL algorithms typically use a gradient-
based optimization approach, such as the Maximum Causal Entropy 
IRL algorithm. This algorithm seeks to minimize the difference between 
the observed behavior data and the behavior predicted by the learned 
reward function, while also maximizing the entropy of the policy. This 
results in a reward function that explains the observed behavior data 
while also being maximally uncertain about the agent’s actions. Recent 
research has also explored the use of deep neural networks to learn 
reward functions from expert demonstrations. Deep Maximum Entropy 
IRL (Wulfmeier, Ondruska, & Posner, 2015) is a variant of IRL that 
uses deep neural networks to model the reward function and policy. 
Deep Maximum Entropy IRL has several advantages over traditional 
IRL approaches. First, deep neural networks are capable of capturing 
complex, non-linear relationships between the state–action pairs and 
the reward function. This enables the model to learn more accurate and 
robust reward functions that can better explain the observed behavior 
data. Second, deep neural networks can handle high-dimensional input 
data. The basic idea behind Deep Maximum Entropy IRL is to use a 
deep neural network to model the reward function. The network takes 
as input the state–action pairs and outputs the weights of the different 
features in the reward function.

To train the model, Deep Maximum Entropy IRL algorithms typ-
ically use a variant of the Maximum Causal Entropy IRL algorithm, 
which seeks to minimize the difference between the observed behavior 
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data and the behavior predicted by the learned reward function, while 
also maximizing the entropy of the policy. This results in a reward 
function that explains the observed behavior data while also being 
maximally uncertain about the agent’s actions. In summary, Deep 
Maximum Entropy IRL is a powerful technique for learning reward 
functions from expert demonstrations using deep neural networks. By 
capturing complex, non-linear relationships between the state–action 
pairs and the reward function, Deep Maximum Entropy IRL enables us 
to develop more accurate and robust models that can be applied in a 
variety of settings.

IRL has drawn a lot of interest from researchers in the fields of 
artificial intelligence and machine learning (Lin & Cook, 2020; Oh 
& Iyengar, 2019; Rhinehart & Kitani, 2017) because it satisfies two 
significant needs (Arora & Doshi, 2021): First, it diminishes the re-
quirement to pre-specify the reward function, which restricts the use 
of RL and optimal control to issues where a reward function can be 
simply stated. Second, a reward function can be transferred to another 
agent and provides a concise representation of an agent’s preferences. 
If the subject agent and the other agent have similar environments 
and purposes, the learned reward function can be employed exactly 
as is; otherwise, it continues to serve as a valuable foundation even 
when the agent specifications are slightly different. In fact, compared 
to the observed agent’s policy, the reward function is naturally more 
transferrable, as Russell (1998) points out.

4. Approach

In this section, we present our approach to detecting abnormal be-
havior in older adults using Inverse Reinforcement Learning. We input 
recent activities of daily living (ADL) into the model to understand 
the older adult’s behavior patterns and intentions. In our previous 
work, Akbari and Sartipi (2024), we introduced a preliminary model for 
detecting ADL abnormalities using Inverse Reinforcement Learning. In 
this experiments and results to evaluate and validate the effectiveness 
of our proposed model.

As shown in Fig.  1, the proposed method consists of three layers: 
Input, Process, and Output. Sensor data logged over 2–3 months (base-
line period) are processed in the offline IRL module to learn the weights 
of the feature vector and reward function 𝜔(𝜀, 𝜗). Then, the online IRL 
module receives the real-time behavior sequence of the resident and 
calculates its associated reward. Finally, the fusion center compares the 
calculated reward with a pre-defined threshold, which represents the 
average reward for normal sequences, to determine the normality of 
the real-time behavior.

4.1. Behavior representation

In order for the data to be ready to be processed in the Behavior 
Change Detection (BCD) module, we need to model human indoor 
behavior for relatively unconstrained environments.

Considering behavior as a sequence of discrete tokens (sleeping, 
eating, watching TV, preparing meals, etc.), two important quantities 
emerge: (i) Content : activities that constitute a behavior; and (ii) Order : 
the temporal arrangement of the constituent activities. The idea of 
tokenizing behavior in this work is similar to the way researchers in 
Natural Language Processing (NLP) have looked at documents as vec-
tors of their constituent words (see Vector Space Model, VSM (Salton, 
Wong, & Yang, 1975)). Approaches such as VSM capture the content 
of a sequence in an efficient way. However, they completely ignore its 
order. Behavior is not fully defined by its activity content alone; rather, 
by its natural activity orderings. Therefore, a model to capture activity 
order in an explicit manner is needed. For this purpose, we consider a 
sliding window of size ℸ  over a behavior sequence to take into account 
all possible sequences of length 𝜚 . We consider the start time of ADL 
as the baseline for the order of tokens in sequences. Therefore, in the 

case of interleaved ADL, ADL will be put in the sequence according to 
their start time.

In order to feed the behavior sequence into the BCD module, it 
needs to have a fixed length. However, behavior sequences can be of 
any length as people perform a different number of ADL each day. To 
tackle this issue, we define a sliding window (with a shift delta of 1) 
that allows for sliding over the dynamic-length sequences and capturing 
ADL dependencies. In this approach, although the length of sequences 
is fixed to a predefined value (sliding window length), truncating the 
sequences does not harm the process of capturing ADL dependencies 
as the dependency between the token at the truncating point and its 
pre- or post-tokens will be observed in the previous or next sequences, 
respectively when the window slides over the original sequence. The 
sliding window size is a parameter of the model that needs to be 
determined depending on the contextual features of analysis that the 
generated data will be used for. For example, if data are to be used for 
learning short patterns, it makes sense to have a small sliding window.

To determine an appropriate value for 𝜚 , we need to find a small-
enough number that, while it limits model complexity, is suitable 
for covering a representative sequence of the individual’s patterns of 
behavior. In this paper, we model human behavior ⊳ as an ordered 
sequence of events: 
⊳ = ⊲1, ⊲2,… , ⊲ℵ,… , ⊲ℸ (1)

where ⊲ℵ refers to an event. We define event ⊲ℵ as a 3-tuple that consists 
of the activity type 𝜗ℵ, duration 0ℵ, and period-of-day 1ℵ: 
⊲ℵ = (𝜗ℵ, 0ℵ, 1ℵ);ℶ2⊲𝜑⊲ 𝜗ℵ ϑ {𝜗3𝜍ℵ4ℵ𝜍5 𝜍51⊲𝜀} 𝜗𝜕0

0ℵ ϑ {𝜗3𝜍ℵ4ℵ𝜍5 06𝜑𝜗𝜍ℵ7𝜕 𝜑𝜗𝜕8⊲} 𝜗𝜕0
1ℵ ϑ {1⊲𝜑ℵ70_79 _0𝜗5 𝜑𝜗𝜕8⊲}

(2)

Then, we reshape ⊳ to a flat tensor ⊳ϖ in order to feed it into the 
algorithm: 
⊳ϖ = 51, 52,… , 5.,… , 5𝜚 ;

ℶ2⊲𝜑⊲ 5. = 𝜗ℵ ℵ9 . 𝛚𝛆𝛝 3 = 0 𝜗𝜕0
5. = 0ℵ ℵ9 . 𝛚𝛆𝛝 3 = 1 𝜗𝜕0
5. = 1ℵ ℵ9 . 𝛚𝛆𝛝 3 = 2

𝜀.𝜍. ℵ = ⌉. + 2
3 {

(3)

where 𝜚  is the window size and equals 3 ϱℸ . It is worth mentioning 
that activity type and period-of-day are categorical data that need to 
be encoded in integers so they can be fed into the BCD module. For 
activity duration, we also discretize the values so the model deals 
with categorical values. We believe that, while it does not hurt the 
accuracy of the model, it simplifies the model by decreasing the state 
space. As the range of duration in different activity types varies, we 
first normalize the duration for each activity type, separately. Then, an 
equal-width discretization method is applied to turn the duration values 
into categorized values.

4.2. Problem formulation

We represent the Behavior Abnormality Detection problem as a 
Markov Decision Process. We define the MDP elements as follows:

• State 𝜀𝜍 ϑ ,𝜚<𝜚ℏ,: a sliding window of size W that represents 
a sequence of the W latest ADL events that the older adult has 
performed at time t: ⊲𝜍εℸ ,… , ⊲𝜍;

• Action 𝜗 ϑ <3𝜍ℵ7𝜕𝜀: the next ADL event ⊲𝜍+1;
• Transition 𝜚 (𝜀𝜍, 𝜗): after taking action 𝜗 in state 𝜀𝜍, the agent 
transitions to state 𝜀ϖ that equals ⊲𝜍εℸ +1,… , ⊲𝜍, ⊲𝜍+1, which slides 
the behavior window one token forward.
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Fig. 1. The IRL-based Behavior Abnormality Detection Model.

We propose an IRL algorithm that estimates the reward function 𝜔(𝜀, 𝜗)
from observations. In this model, observations are trajectories of ADL 
that are performed by the older adult. We use a discount factor to 
consider expected future rewards in the long-term reward calculation.

We hypothesize that learning the reward function will enable us to 
understand unusual ADL sequences. The threshold-based fusion center 
evaluates the real-time reward and determines the normality of the 
behavior by comparing the associated reward of the real-time behavior 
sequence with a predefined threshold 𝜔𝜍2. In the following blocks, the 
offline IRL module as well as the online IRL and fusion module are 
presented.
Algorithm 1: Offline IRL
Require: Expert demonstrations 𝜛⊲ = (𝜀1, 𝜗1, 𝜀2, 𝜗2, ...) , ADL window 

size ℸ , Episode length ⊲1>, Hidden size 2ℵ00⊲𝜕𝜀, Learning rate >𝜑, 
Number of epochs 𝜕6⋆⊲1732𝜀

Ensure: Reward function 𝜔
1: Define the reward network 𝜔 using a neural network with input 
size ℸ , hidden size 2ℵ00⊲𝜕𝜀, and output size equal to the number 
of activity classes 

2: Define the optimizer (Adam) and the loss function (CrossEntropy) 
for the reward network 

3: Define a custom Gym environment based on the MDP with 
parameters (,,<, 𝜚 ,𝜔, ≨) , where , is the state space, < is the 
action space, 𝜚  is the transition function, and ≨ is the discount 
factor. 

4: Train the reward network 𝜔 using the state–action pairs in 𝜛⊲ and 
the optimizer and loss function for a specified number of epochs 

5: return 𝜔
In algorithm 1, the action space and the observation space are 

defined based on the number of activity classes and the number of 
previous activities, respectively. The reward network 𝜔 is defined using 
a neural network with input size ℸ , hidden size 2ℵ00⊲𝜕𝜀, and output 
size equal to the number of activity classes. The optimizer and the loss 
function are also defined. The episode length is defined as ⊲1>. The 
log data is converted to state–action pairs, and the reward network 𝜔
is trained using these pairs and the optimizer and loss function for a 
specified number of training epochs. The trained reward function 𝜔 is 
returned as the output of the algorithm. Further implementation details 
can be found in Appendix-Algorithm 3 and Algorithm 4.

Algorithm 2: Online IRL and Fusion Module
Require: Real-time ADL Sequence 𝐴𝜕16𝜍𝜀⊲𝐵 , Reward threshold 𝜔𝜍2, 

Reward function 𝜔
Ensure: 0 (No Potential Behavior Change is Detected), 1 (Potential 

Behavior Change is Detected)
1: Pass the 𝐴𝜕16𝜍𝜀⊲𝐵 to the reward network and get the output 

𝜔(𝐴𝜕16𝜍𝜀⊲𝐵) (reward value for each activity class).
2: if 𝜔[actual action] ∱ 𝜔𝜍2 then 
3: return  1
4: else 
5: return  0
6: end if

Algorithm 2 includes an online IRL module that receives a trained 
reward function 𝜔, as well as a real-time sequence of ADL and a 
predefined threshold 𝜔𝜍2 to determine the normality of the behavior 
sequence. The reward function outputs a reward value for each activity 
class. In the fusion center, the reward value of the current activity is 
compared to 𝜔𝜍2 to determine whether the activity conforms to the 
typical behavior pattern.

5. Results

In the following subsections, we provide the results of our exper-
iments on a real dataset to evaluate the performance of the proposed 
approach. Presents an evaluation of the proposed approach to behavior 
abnormality detection in smart homes. The section is divided into two 
subsections: Dataset and Analysis. In the Dataset subsection, we provide 
an overview of the real dataset used in our experiments. The Analysis 
subsection presents the results of our experiments, including a quan-
titative evaluation of the proposed approach in terms of its ability to 
detect potential behavior changes. By presenting a thorough evaluation 
of our proposed approach, we aim to provide a foundation for future 
research in this area and to inspire new approaches to improving the 
quality of care for older adults.
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Table 1
Example data from CASAS-Aruba dataset.
 Date Time SensorID SensorState Activity

 2010–11–04 00:03:50 M003 ON Sleeping begin  
 2010–11–04 00:03:57 M003 OFF  
 2010–11–04 00:15:08 T002 21.5  
 . . . . .  
 . . . . .  
 . . . . .  
 2010–11–04 05:40:43 M003 OFF Sleeping end  
 2010–11–04 05:40:51 M004 ON  
 2010–11–04 05:40:52 M005 OFF BedToToilet begin 
 . . . . .  
 . . . . .  
 . . . . .  
 2010–11–04 05:43:30 M004 OFF BedToToilet end  

Table 2
Dataset statistics.
 Number of records Number of ADL
 1,719,558 6,477  

Table 3
ADL types in CASAS-Aruba dataset.
 ADL type Number of records
 eating 26  
 enter_home 83  
 housekeeping 55  
 leave_home 147  
 meal_preparation 128  
 personal_hygiene 439  
 sleep_not_in_bed 4  
 sleeping 246  
 wandering_in_room 14  
 watchTV 89  

5.1. Dataset

In this section, we introduce the public dataset that will be used 
for the sake of evaluating the proposed Behavior Change Detection 
method. The CASAS-Aruba dataset (Cook, 2010) consists of activities 
that a woman performed at home during a period of seven months. A 
few examples from this dataset are shown in Table  1. In this dataset, 
eleven types of indoor activities were included. Meal preparation, 
Relaxing, Eating, Working, Sleeping, Washing Dishes, Bed to Toilet, 
Entering Home, Leaving Home, Housekeeping, and Respiration were 
recorded using motion sensors, door sensors, and temperature sensors. 
As shown in Table  1, start and end times for each activity were 
recorded, making it possible to calculate the duration of the activity. 
Also, the time ordering of activities was captured. Table  2 and Table  3 
present some overall statistics on the Aruba dataset.

Fig.  2 illustrates the behavior trend of the Aruba resident for one 
month. Looking at the plot, we can see that there is a clear pattern 
in the activities over the course of the month. For example, there are 
periods where the woman is predominantly sleeping or eating, followed 
by periods where she is predominantly working or engaging in other 
activities. Additionally, we can see that there is some variation in the 
activities from day to day, with some days showing more variety in 
activities than others.

Forecasting categorical time series data presents unique challenges 
that require specialized methodologies capable of handling discrete 
variables. Markov Chain models are particularly well-suited for this 
task, as they predict the probability of future states based on ob-
served patterns in the data. These models operate under the assumption 
that the future state of a categorical variable depends solely on the 
present state, disregarding any prior states. This property allows for 
efficient estimation of state transition probabilities, facilitating accurate 
forecasting in various applications.

However, first-order Markov models, which consider only the im-
mediate past state, may not capture the complex dependencies inherent 
in many real-world scenarios. To address this limitation, higher-order 
Markov models extend the dependency to multiple preceding states. 
By incorporating information from several past states, these models 
can better account for intricate patterns and temporal dependencies 
in the data. Ching, Fung, and Ng (2004) demonstrated that higher-
order Markov models could significantly enhance forecasting accuracy 
in categorical time series by capturing these extended dependencies.

In our approach, we represent the current state by concatenating the 
last 𝐶 activities, effectively creating a window that spans 𝐶 time steps. 
This method captures temporal dependencies that a first-order model 
would overlook. By considering a sequence of past activities, the model 
gains access to more historical information, enabling it to make more 
informed predictions and decisions.

Within the framework of Reinforcement Learning (RL), the Markov 
Decision Process (MDP) relies on the Markov property, which states 
that the future is independent of the past given the present state. 
By defining the state to include the last 𝐶 activities, we preserve 
the Markov property because all relevant historical information is 
encapsulated within the current state. Nonetheless, the underlying 
process remains influenced by multiple past states, characteristic of a 
higher-order Markov model.

This modeling approach has significant practical implications. By 
formulating the problem as a higher-order Markov model, we can 
capture more complex patterns and dependencies in the data. This leads 
to more accurate predictions and the development of more effective 
policies when training an RL agent. Consequently, our model can better 
adapt to the nuances of categorical time series data, improving overall 
forecasting performance and decision-making processes.

5.2. Analysis

In this study, we developed an IRL model to detect behavior changes 
in older adults from ADL data and evaluated its performance using the 
CASAS dataset.

We split the CASAS dataset into train and test sets with a 70–30 
ratio. Using the train set, we trained our inverse reinforcement learning 
model to associate reward values to each action (activity class) in a 
given state (ADL sequence) from sequences of activities of daily living 
(ADL) data. We then evaluated the model’s performance on the test set.

Table  4 shows the activity codes and their corresponding activity 
labels. These codes are used to identify different activities that are 
performed by the individual. For example, the code ‘‘4’’ represents the 
activity of bathing for a long duration in the morning, and the code 
‘‘18’’ represents the activity of transitioning from bed to toilet for a 
short duration at midnight. Overall, this table serves as a reference to 
understand the codes that are used to represent these activities in the 
following graphs.

To provide an overview of the dataset, we first generated a bar chart 
showing the distribution of data over various activity classes (Fig.  3). 
The chart revealed that the dataset is imbalanced, with some activity 
classes occurring more frequently than others.

We trained the model using Adam optimizer, learning rate of 0.001 
and window size of ℸ = 10 on Colab environment with a T4 GPU, 
14 GB of system RAM and 15 GB of GPU RAM. We monitored its 
training progress by tracking the cross-entropy loss over the 1000 
epochs of training. Fig.  4 shows the line chart of the model’s training 
loss. As can be seen, the model’s loss decreases from 12 to 2.5 over the 
1000 epochs of training, indicating that the model is learning to assign 
higher rewards to next activities that conform to the behavior pattern of 
the individual and lower rewards to abnormal activities. This suggests 
that the model is able to capture the underlying patterns in the data.

The decrease in cross-entropy loss over the training epochs indicates 
that the model is learning to minimize the difference between its 
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Fig. 2. The Behavior Trend of the Aruba Resident over Time.

Fig. 3. The distribution of Activity classes in the Train Set.

predicted activity classes and the actual activity classes. This is an im-
portant feature of the model, as it allows us to detect behavior changes 
in older adults more accurately and efficiently. Next, we analyzed the 
model’s performance using a HeatMap that displays the normalized 
average reward for each predicted and actual activity class (Fig.  5). The 
𝐷-axis represents the predicted activity class by the IRL model, while 
the 𝐸 -axis represents the actual activity class. The lighter colors in the 
HeatMap indicate a higher reward, while the darker colors indicate a 
lower reward. We observed that the Heatmap’s diagonal is apparent, 
which indicates that the trained model is able to give high rewards 
to activity classes that match the actual activity class. This suggests 
that the model can correctly identify the majority of activity classes. 
Additionally, we noticed that there are dark cells corresponding to each 
actual activity class, which indicates that the model is able to identify 
activity classes that are not very probable to occur in some states. 
This is an important feature of the model, as it allows us to identify 
anomalies in the data that may indicate behavior changes.

However, we also observed that apart from the light cells in the 
diagonal, there are other light cells present in the HeatMap. This is 
because, in each state, there is more than one single activity class that 
is possible to occur due to the diverse nature of the behavior patterns 
of an individual. This suggests that the model may sometimes predict 
multiple activity classes with similar probabilities. To further evaluate 
the model’s performance, we define a metric ’Alternative Activity Re-
ward Accuracy (AARA)’ to measure how accurately the model assigns 
high rewards to activity classes that could be alternatives to the true 
activity classes. We do this by calculating the ratio of high-reward 

activity classes present in the training set when added to the end of 
the current state ,.

Also, ‘Low-Reward Irrelevance Rate (LRIR)’ metric calculates the 
proportion of low-reward activity classes that are not present in the 
training set when added to the end of the current state ,. A higher 
ratio suggests that a significant portion of low-confidence predictions 
are correctly identifying irrelevant classes. 

AARA =
}𝜕

ℵ=1 1(𝜑ℵ > 𝐹 ς 𝜀&𝜗ℵ ϑ TrainSet)}𝜕
ℵ=1 1(𝜑ℵ > 𝐹)

LRIR =
}𝜕

ℵ=1 1(𝜑ℵ < 𝐹 ς 𝜀&𝜗ℵ φ TrainSet)}𝜕
ℵ=1 1(𝜑ℵ < 𝐹)

(4)

where:

• 𝜕 is the total number of predictions.
• 𝜑ℵ is the reward for the predicted activity class ℵ.
• 𝐹2 is the threshold for high rewards.
• 𝐹> is the threshold for low rewards.
• 𝜀 is the current state (i.e. previous W-1 ADL events)
• 𝜗ℵ is the predicted activity class.
• 1 is the indicator function, which is 1 if the condition is true and 
0 otherwise.

• TrainSet is the set of ADL sequences in the training data.

𝐹2 is set to 0.85 while 𝐹> is set to 0.15 according to reward statistics and 
the fact that rewards are normalized. An AARA of 0.96 and an LRIR of
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Fig. 4. Cross-entropy Loss over 1,000 Epochs of Training.

Fig. 5. The average reward for predicted activity classes in the Train Set.

0.93 indicate that the model performs significantly well in capturing 
the behavior patterns.

The HeatMap graph clearly shows that certain activities cannot be 
substituted with others in a typical situation. For instance, sleeping for 
a medium duration at night cannot be replaced with bed to toilet tran-
sition, eating, or a long personal hygiene. Additionally, less frequently 
occurring activities like wandering in the room are generally associated 
with lower average reward values, except when they actually occur. 

This is reflected in the graph as the diagonal cells for such activities 
remain light, while almost all other cells in the column are dark.

To ensure that our IRL model was able to generalize well, we 
evaluated its performance on a separate test set that was not used 
during the training phase. We used the same bar chart and HeatMap 
visualizations to demonstrate the test set performance, as we did for 
the training set. Fig.  6 shows the bar chart for the test set, which 
has a similar distribution of data across the various activity classes 
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Table 4
The mapping of activity classes to activity codes.
 Activity label Activity code 
 Bathing (Long, Morning) 4  
 Bathing (Medium, Morning) 24  
 Bathing (Short, Morning) 15  
 Bed to Toilet Transition (Short, Midnight) 18  
 Bed to Toilet Transition (Short, Night) 2  
 Eating (Medium, Night) 21  
 Eating (Short, Night) 32  
 Enter Home (Short, Midnight) 33  
 Enter Home (Short, Morning) 14  
 Enter Home (Short, Night) 9  
 Leave Home (Medium, Midnight) 36  
 Leave Home (Short, Midnight) 19  
 Leave Home (Short, Morning) 8  
 Leave Home (Short, Night) 30  
 Meal Preparation (Medium, Night) 26  
 Meal Preparation (Short, Midnight) 28  
 Meal Preparation (Short, Morning) 7  
 Meal Preparation (Short, Night) 20  
 Personal Hygiene (Long, Morning) 25  
 Personal Hygiene (Long, Night) 34  
 Personal Hygiene (Medium, Midnight) 23  
 Personal Hygiene (Medium, Morning) 5  
 Personal Hygiene (Medium, Night) 31  
 Personal Hygiene (Short, Midnight) 27  
 Personal Hygiene (Short, Morning) 3  
 Personal Hygiene (Short, Night) 12  
 Sleep (Medium, Night) 29  
 Sleep (Short, Midnight) 17  
 Sleep (Short, Morning) 11  
 Sleep (Short, Night) 1  
 Wandering in Room (Short, Morning) 13  
 Watch TV (Short, Morning) 35  
 Watch TV (Short, Night) 16  
 Work (Short, Midnight) 22  
 Work (Short, Morning) 6  
 Work (Short, Night) 10  
 Wandering in Room (Short, Night) 0  

as the training set. This indicates that the test set is representative of 
the overall dataset and that the model is able to generalize effectively 
beyond the training data. Overall, the evaluation of the IRL model on 
the test set provides further evidence of its robustness and effectiveness 
in accurately predicting activity patterns and rewards for residents in 
smart homes. Fig.  7 shows the HeatMap for the test set, which displays 
similar results as the HeatMap for the training set. The diagonal is 
apparent, indicating that the model is able to accurately predict the 
majority of activity classes, and there are dark cells corresponding 
to each actual activity class, suggesting that the model is able to 
identify activity classes that are not very probable to occur in some 
states. Additionally, there are light cells present in the HeatMap, which 
suggests that the model is able to predict multiple activity classes with 
similar probabilities in some states.

The fact that our IRL model produced similar results for the test 
set as for the training set suggests that the model is not overfitted to 
the training data and can effectively generalize to new, unseen data. 
This is a crucial feature of the model, as it enables us to apply it to 
new datasets with confidence, thereby improving our ability to detect 
behavior changes in older adults more accurately and efficiently.

The robustness of our IRL model is particularly important in the con-
text of homecare, where residents’ behavior patterns can vary widely 
and change over time. By accurately predicting these patterns and 
detecting any changes, our model can help caregivers and researchers 
to better understand the needs and preferences of individual residents, 
and to develop tailored interventions that improve their quality of life. 
Overall, the ability of our IRL model to effectively generalize to new 
datasets is a significant advantage that enhances its practical utility in 
real-world care settings.

5.2.1. Synthetic sequence injection
To evaluate the ability of our models to identify behavior changes, 

we introduced synthetic abnormal sequences into the dataset. Based 
on existing literature, changes in physical activity levels, alterations 
in rest periods between tasks, changes in sleep patterns, forgetting to 
complete tasks, and repeating tasks are all included in the symptom 
profiles of diseases such as Alzheimer’s, heart disease, urinary tract 
infections, diabetes, and others. We therefore introduced these changes 
into the activities of daily living (ADL) sequences in the CASAS dataset. 
We also inject samples of behavior abnormalities by rearranging ADL 
and manipulating activity duration. For example, while in the original 
ADL sequences eating occurs after meal preparation, we reversed the 
ADL order to inject partially misordered sequences.

• ADL duration alterations: In 50% of the abnormal sequences, we 
modify ADL durations by randomly scaling ADL lengths by ±20%, 
±60%, and ±90%.

• ADL rearrangement: In 30% of sequences, we swap the order of 
two semantically related ADLs (e.g., swapping ‘‘meal preparation’’ 
and ‘‘eating’’) to create a partially misordered pattern.

• Random shuffling of ADLs: In a further 20% of sequences, we 
randomly permute the entire ADL list, disrupting all temporal 
dependencies.

Table  5 provides a summary of abnormalities injected into the data. 
After injecting %10 synthetic abnormal sequences, SMOTE method 
is used to oversample the abnormal sequences to ensure a balanced 
dataset. We used the augmented labeled dataset to evaluate the perfor-
mance of our fusion module.

Table  6 presents the performance metrics for the proposed ap-
proach, including accuracy, precision, recall, and F1 score, at different 
threshold values. The results show that using lower threshold values in-
creases the number of false positives, indicating that more normal ADL 
sequences are incorrectly classified as abnormal. Conversely, higher 
threshold values result in a decrease in recall, indicating that the 
model is more likely to miss abnormal cases. We recommend selecting 
a threshold value that balances precision and recall. To aid in this 
decision, we also report the F1 score, which is the harmonic mean of 
precision and recall. This score provides a single metric that combines 
both precision and recall, making it useful for selecting an appropriate 
threshold.

To compare the performance of our proposed model with baseline 
models, we implemented both an LSTM classifier and a Transformer-
based classifier. In our implementation of the LSTM model, we adopted 
the architecture proposed by Zerkouk and Chikhaoui (2019), utilizing 
a hidden size of 64 and an embedding size of 200. For the BERT model, 
we employed the ‘AutoModelForSequenceClassification’ from the Hug-
ging Face Transformers library, using the pretrained ’bert-base-uncased’ 
model.

To ensure a fair, threshold-independent comparison, we report both 
F1 at each model’s optimal decision threshold (selected via a validation-
set grid search over [0.1, 0.9]) and ROC-AUC, which does not require 
threshold tuning. Further, to account for the randomness inherent in 
SGD-based training, we retrained every method (ours and all baselines) 
10 times with different random seeds. Table  7 reports the mean ±
standard deviation of F1, precision, recall, accuracy and ROC-AUC over 
these runs. According to Table  7, both LSTM and BERT achieve substan-
tially higher recall than precision, indicating many false positives on 
the positive class. Their imbalance in recall versus precision is reflected 
in moderate F1 scores (0.67 and 0.69, respectively) and relatively 
lower ROC-AUC values (0.79 and 0.82). By contrast, the IRL model not 
only attains the highest F1 (0.76) but also leads in ROC-AUC (0.90), 
demonstrating a more balanced trade-off between true-positive and 
false-positive rates and superior threshold-independent performance.

Our experimental results indicate that BERT and LSTM are not 
particularly effective in this context, despite their success in vari-
ous other applications. We attribute this to the limited size of our 
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Fig. 6. The distribution of Activity classes in the Test Set.

Fig. 7. The average reward for predicted activity classes in the Train Set.

Table 5
Summary of injected abnormality types.
 Alteration type Fraction injected Parameters  
 Duration alterations 50% Scale ADL durations by ±20%, ±60%, ±90%  
 ADL rearrangement 30% Swap order of two related ADLs (e.g., Meal Prep  Eating) 
 Random shuffling 20% Random permutation of entire ADL sequence  

training dataset, which is insufficient for effectively training deep 
neural network models such as these. Additionally, the pre-training of 
BERT involves general-domain text sequences, which may not translate 

well to the specific nuances of ADL sequences without substantial 
fine-tuning. LSTM networks also face challenges in managing longer 
sequences, which can further affect performance.
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Table 6
Evaluation metrics for different thresholds.
 Threshold Accuracy Recall Precision F1  
 0.6 0.73 0.87 0.65 0.744 
 0.75 0.74 0.84 0.66 0.739 
 0.85 0.73 0.81 0.72 0.762 
 0.9 0.74 0.76 0.73 0.744 

Table 7
Evaluation metrics for baseline models; Mean ± standard deviation of evaluation metrics over 10 independent runs; F1 is reported 
at each classifier’s optimal threshold.
 Model Accuracy Recall Precision F1 (best-threshold) ROC-AUC  
 LSTM 0.55 ± 0.03 𝛡.𝛠𝛓 ± 𝛡.𝛡𝛗 0.54 ± 0.05 0.672 ± 0.02 0.78 ± 0.03 
 BERT 0.51 ± 0.02 0.86 ± 0.03 0.58 ± 0.04 0.693 ± 0.02 0.82 ± 0.02 
 IRL (th=0.85) 𝛡.𝛁𝛛 ± 𝛡.𝛡− 0.81 ± 0.02 𝛡.𝛁+ ± 𝛡.𝛡− 𝛡.𝛁±+ ± 𝛡.𝛡+ 𝛡.𝛓𝛡 ± 𝛡.𝛡− 

To enhance the adaptability of Transformer models like BERT to 
specialized tasks, future research should prioritize fine-tuning with 
domain-specific data. This approach could potentially mitigate the 
limitations observed in our study and improve model efficacy in similar 
applications.

The results demonstrate that our IRL model effectively detects be-
havior changes in older adults from ADL sequences with high accuracy. 
The model successfully identifies activity classes unlikely to occur in 
certain states, aiding healthcare professionals in detecting anomalies 
and potential behavior changes.

Our evaluation on the augmented dataset highlights the effective-
ness of our approach in identifying behavior changes linked to various 
diseases. By accurately detecting these changes, our method has the 
potential to enhance the quality of care provided to residents in smart 
homes.

6. Conclusion

This research utilizes state-of-the-art Inverse Reinforcement Learn-
ing algorithms to address the problem of behavior abnormality detec-
tion in smart home settings. The proposed model introduces a novel 
representation of an individual’s recorded activities of daily living 
(ADL) as a higher-order Markov Decision Process. An offline IRL al-
gorithm is then used to infer the underlying reward function of the in-
dividual, followed by an online IRL algorithm in collaboration with the 
fusion center to determine the abnormality of the observed behavior.

We evaluated the effectiveness of the proposed approach using an 
augmented real dataset, and the results showed that the model is capa-
ble of detecting potential behavior changes with an F1 score of %76.2. 
This demonstrates the model’s ability to accurately identify abnormal 
behavior patterns in smart home residents, providing caregivers and 
researchers with a valuable tool for improving the quality of care and 
developing tailored interventions.

While the proposed model represents a significant advancement 
in the field of behavior abnormality detection, there are also some 
limitations that should be noted. One such limitation is the fact that 
as the length of the ADL sequences increases, there is a corresponding 
increase in the size of the state space, which can make it challenging 
to train the model effectively.

Specifically, as the length of the ADL sequences grows, the number 
of possible states in the MDP increases exponentially. This means that 
with an increase in the length of the ADL sequences, there is a need for 
more training data to adequately cover the expanded state space. This 
can be a significant challenge in practice, particularly when dealing 
with limited or sparse datasets.

Despite this limitation, our proposed model represents a promising 
approach to behavior abnormality detection in smart home settings. 
By leveraging the power of IRL algorithms and machine learning tech-
niques, we can gain deeper insights into the behavior patterns of 
residents and develop more effective interventions to improve their 
quality of life.
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Appendix

Algorithm 3: RewardNet Neural Network
Data: Input tensor 𝐺 of size W
Result: Output tensor of size No_ActivityClasses

1 Class RewardNet{
2 Initialize(W, hidden_size, No_ActivityClasses, 

dropout_prob=0.5);
3  Define fully connected layer 931: Rℸ  R2ℵ00⊲𝜕_𝜀ℵ𝐻⊲;
4  Define activation function 𝜔⊲𝐼𝐽 ;
5  Define dropout layer 0𝜑7176𝜍: Dropout with probability 

0𝜑7176𝜍_1𝜑7𝐾;
6  Define fully connected layer 932: 

R2ℵ00⊲𝜕_𝜀ℵ𝐻⊲  R𝐶7_<3𝜍ℵ4ℵ𝜍5𝐿>𝜗𝜀𝜀⊲𝜀;
7 Forward(x);
8 𝐺  931(𝐺);
9 𝐺  𝜔⊲𝐼𝐽 (𝐺);
10 𝐺  0𝜑7176𝜍(𝐺);
11 𝐺  932(𝐺);
12  return 𝐺;
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Algorithm 4: ADLEnv Environment
Data: Log file path >78_9ℵ>⊲, window size ℸ , episode length 

⊲1_>⊲𝜕
Result: Trained Reward Network

13 Class ADLEnv inherits from gym.Env;
14 Initialize(log_file, ℸ , ⊲1_>⊲𝜕, 2ℵ00⊲𝜕_𝜀ℵ𝐻⊲ = 32, >𝜑 = 0.001, 

𝜕6⋆_⊲1732𝜀 = 100);
15 begin
16 Load activity logs from >78_9ℵ>⊲;
17 Define activity_classes as a dictionary mapping 

activity names to indices;
18 Initialize action_space as Discrete with size equal to 

number of activities;
19 Initialize observation_space as MultiDiscrete

with ℸ  activities;
20 Initialize reward_net with input size ℸ , hidden size 

2ℵ00⊲𝜕_𝜀ℵ𝐻⊲, and output size equal to number of activities;
21 Set optimizer to Adam with learning rate >𝜑;
22 Set loss function to CrossEntropyLoss;
23 Initialize state as a zero vector of size ℸ ;
24 Set current_step to 0;
25 Set episode length to ⊲1_>⊲𝜕;
26 end
27 Function reset();
28 begin
29 Reset state to zeros;
30 Reset current_step to 0;
31 return state;
32 end
33 Function step(action);
34 begin
35 Compute reward using get_reward(state, action);
36 Update state by appending 𝜗3𝜍ℵ7𝜕 and removing the oldest 

activity;
37 Increment current_step;
38 Set done to True if current_step ∲ ep_len;
39 return state, reward, done, {};
40 end
41 Function train_reward_net(save_path);
42 begin
43 Prepare input-output pairs from log data using window size 

ℸ ;
44 Convert inputs and targets to tensors;
45 for epoch = 1 to 𝜕6⋆_⊲1732𝜀 do
46 Forward pass: compute outputs from

reward_net(inputs);
47 Compute loss using loss_fn(outputs, targets);
48 Backpropagation: optimize reward_net parameters;
49 if epoch mod 50 == 0 then
50 Print current epoch and loss;
51 end 
52 end 
53 Save reward_net parameters to 𝜀𝜗4⊲_1𝜗𝜍2;
54 end
55 Function get_reward(obs, action);
56 begin
57 Convert observation 7𝐾𝜀 to input tensor;
58 Forward pass through reward_net to get output tensor;
59 return reward corresponding to 𝜗3𝜍ℵ7𝜕;
60 end

Data availability

Data will be made available on request.
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