
A Multi-view Toolkit to Assist Software Integration and Evolution ∗

Kamran Sartipi
Dept. Computing and Software, McMaster University, Hamilton, ON, L8S 4K1, Canada

sartipi@mcmaster.ca

Abstract. Software product line engineering aims at
producing functionally similar software systems as a fam-
ily of products. In this process, the development life cy-
cle has been shifted from traditional activities into reuse-
centric and customizable component approaches. In soft-
ware product line engineering from existing systems many
technical, organizational, and user-adoption problems need
to be dealt with by the means of proper tool support. In this
context, we provide a supporting toolkit that blends the be-
havior and structure recovery techniques in order to local-
ize the major components of the existing systems as candi-
dates for generic or reusable components. An integration
of the reusable and new components will form a domain
reference architecture, whose instantiation will producethe
products. For each new product the scattering of the added
features in the structure of the original components will be
determined by the means of two metrics to assess the func-
tional cohesion and feature functional scattering. This al-
lows us to control the structural evolution of the product
line engineering process.

1. Introduction

Modern industrial organizations in different application
domains are deeply involved in various software engi-
neering tasks such as: developing new systems, integrat-
ing legacy assets with modern applications, decentralizing
monolithic systems, and performing various maintenance
activities. In order to sustain their competitiveness in in-
dustry, these organizations require a well maintained high-
quality software system to continue their business without
any interruption caused by software failure. In this con-
text, a multi-view and interactive assistant-tool would be
extremely valuable in order to identify the intended soft-
ware system components, and to leverage the knowledge of
the software experts about the impact of the integrated fea-
tures on the system structure. As an example of a software
product line engineering organization, the Fraunhofer IESE
defines its PuLSE (Product Line Software Engineering) pro-
cess using the following stages [2]: i) study the existing

∗This work was funded by Natural Sciences and Engineering Research
Council of Canada (NSERC).

enterprise system and its domain to compose a version of
the PuLSE that is suited for that specific domain and also
compose a reference architecture; ii) specify and generatea
member of the product family by extracting generic compo-
nents and adding new features using new technologies; and
iii) monitor and control the evolution and management of
the product family infrastructure.

In this paper, we describe the characteristics of our view-
based software analysis and evaluation toolkit (namelyAl-
borz) that assists a product line engineering process (e.g.,
PuLSE) in various ways, such as: i)identifying generic
components: by executing important task scenarios on the
system and applying dynamic analysis, where the core im-
plementation of the reusable components within the source
code are identified with minimum effort; ii)extracting
generic components: by augmenting the core implementa-
tions into cohesive components that include the group of
highly related functionality; iii)evaluating the merit of the
final products: by measuring feature functionality scattering
throughout the system’s structure as a means to assess the
impact of the new features on the structure of the system,
as well as measuring the cohesion of the system in term of
overall association of the components.

2. Highlights of the toolkit

Alborz is a multi-view, interactive, and wizard-based
software architecture reconstruction and evaluation toolkit
that takes advantage of the Eclipse plug-in technology to
provide feature extensibility, and uses GXL format to in-
teroperate with other reverse engineering tools. Structure
recovery is based on static pattern matching and high-level
architectural queries. Behavior recovery is based on exe-
cution pattern extraction and identification of software fea-
tures in the source code using data mining techniques.

Scalability of the dynamic analysis. Alborz toolkit pro-
vides three different techniques to deal with large execu-
tion traces. The first technique is based on eliminating the
loop-based repetitions in a trace by representing the initial
sequence of function entry/exit pairs asdynamic call tree
that allows us to perform a top-down program-loop elimi-
nation operation [6]. The second technique is based on the



data mining algorithmsequential pattern discovery[1] that
extracts frequently occurring traces that allow us to locate
redundant traces such as program-loops or common soft-
ware operations (e.g., mouse movement, user-interface in-
teractions, and utilities). Data mining operations by nature
generate a large number of patterns, most of which are sub-
strings of a larger pattern, hence, a further operation for sub-
trace elimination is required to obtained unique traces. The
third technique is based onstring manipulationalgorithms
that allow us to identify repetitive patterns in an string of
elements.

Blend of dynamic and static analysis. The combina-
tion of dynamic analysis with static analysis of software
system is considered as a very promising approach [3, 7, 4].
These techniques usually produce independent views, not
an integration of both views. Alborz toolkit allows us to
inject software behavioral information (stemmed from task
scenarios or use cases) into static analysis of the system in
order to adjust the static analysis to produce more sensible
results. This approach uses feature to source code assign-
ment to localize the core functions that implement specific
software operations (features) [6] and then uses the core
functions as the seeds in a software clustering technique to
collect functions into software modules or components that
correspond to specific operations of the software system [4].

Discovery of patterns. The application of techniques
such as data mining and concept lattice analysis reveals pat-
terns of relations among the software entities. Specific data
mining techniques such as association rules discovery has
direct application in static analysis [5] and sequential pat-
tern discovery has been applied on dynamic analysis for
locating the implementation of software features in source
code [6]. The application of other data mining techniques
on software analysis is yet to be studied. Very few ap-
proaches in dynamic analysis utilize the visualization power
of concept lattice techniques. These techniques must handle
the inherent characteristic of the lattice in the sense thatthe
lattice easily becomes overwhelmed by the number of gen-
erated concepts. One remedy for such a problem is to raise
the granularity level of the objects and attributes in defining
the context table. Alborz uses concept lattice technique to
separate the common execution patterns from specific pat-
terns of a targeted operation [4].

Usability and extensibility. Inadequate tool support
would cause interesting approaches to become obsolete or
being used only by their developers. Much effort is needed
to make an interesting approach usable by others. Alborz
provides: i) short learning curve that is guided by wizards
with clear explanation of their tasks; ii) extensible and inter-
operable open source technologies available for developing
platform independent environments (e.g., Java and XML),
as well as tool integration platform (e.g., Eclipse) that is
based on plug-in technology. The proposed tool can act a

key role in such product family generation in various as-
pects of program understanding, localizing the features in
the source code, and evaluating the merit of the final prod-
uct.

3. Limitations and future work

The current version of Alborz only covers procedural
software systems and lacks a fact extractor tool; however,
the tool interoperates with the existing fact extractor tools
and accepts input data in a variety of formats (e.g., GXL,
RSF). In dynamic analysis, the trace extraction is performed
through execution of a set of task scenarios; hence, famil-
iarity of the user with the application domain and the sub-
ject system is required. The future extensions to the Alborz
toolkit include the provision of: i) static and dynamic anal-
ysis of object oriented systems; ii) growing the core of a
component using the pool of execution patterns generated
by sequential pattern discovery technique; hence generat-
ing cohesive components based on the frequency of usage
not static dependencies; this provides a different view of the
component as opposed to growing the component by static
analysis; and iii) discovery of useful patterns as well as anti-
patterns in both static and dynamic views, in order to be
used for generating more maintainable components. So far,
we have successfully applied our toolkit on isolated systems
such as Xfig drawing tool and Pine email client; however we
still need to apply our toolkit on real world software product
line projects as the next step.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proceedings of the International Conference on Data Engi-
neering (ICDE), pages 3–14, 1995.

[2] J. Bayer et al. Pulse: A methodology to develop software
product lines. InProceedings of ACM SIGSOFT Symposium
on Software Reusability (SSR’99), pages 122–131, May 1999.

[3] C. Riva and J. V. Rodriguez. Combining static and dynamic
views for architecture reconstruction. InProceedings of the
IEEE CSMR, pages 47–55, 2002.

[4] K. Sartipi, N. Dezhkam, and H. Safyallah. An orchestrated
multi-view software architecture reconstruction environment.
In Proceedings of IEEE WCRE’06, pages 61–70, October
2006.

[5] K. Sartipi and K. Kontogiannis. A user-assisted approach to
component clustering.Journal of Software Maintenance: Re-
search and Practice (JSM), 15(4):265–295, July/August 2003.

[6] K. Sartipi and H. Safyallah. Application of execution pattern
mining and concept lattice analysis on software structure eval-
uation. InProceedings of the SEKE’06, pages 302–308, June
2006.

[7] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and
C. Riva. View-driven software architecture reconstruction. In
Proceedings of the IEEE Working Conference on Software Ar-
chitecture (WICSA’04), pages 122–132, 2004.


