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Abstract. This paper presents a brief analysis of some approaches in the field
of Hardware/Software (HW/SW) Co-Design. The main efforts in the design
of these systems are focused on the HW/SW partitioning process, and little
work is devoted to providing a modern system development environment in this
field. In the design process, some changes to the architectures of the systems
are needed to adopt these enhancements. In order to investigate and evaluate
different architectures in this regard, i.e. non-functional qualities, an analysis
method is required. SAAM, originally devised for the analysis of software ar-
chitectures, is utilized to compare and evaluate three co-design systems, based
on different task-scenarios and functional decompositions.
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1 Introduction

Hardware/software co-design addresses the design of an embedded system using both
hardware and software components. This research area is increasingly important
since the embedded systems are becoming more complex and requiring better cost-
performance achievement. Co-design is applicable to a range of systems from small
home appliances to large real time systems.

The key task in HW/SW co-design is the automatic partitioning of the system
specification into hardware and software parts. Partitioning algorithm uses specific
criteria to perform the partitioning task. The algorithm searches through the system



specification, which is usually converted to a graph representation, to extract the par-
titioning related information. As a simple rule, parallelism is a criterion for hardware
implementation, sequential execution and behavior control are criteria for software
implementation. User defined parameters concerning area i.e. hardware elements in
a chip or the code used for software, timing, etc., build the framework for the eval-
uation of the partitioned system. These parameters constitute the components of a
function, known as cost-function, which evaluates the performance of the partitioned
system.

In most approaches there is a predefined target architecture consisting of a pro-
cessor which executes the software part, and a set of co-processors which implement
the hardware functions of the partitioned system. Other configurations are also used.
Software compilation and hardware synthesis are required tasks to realize the parti-
tioned system into target architecture.

The co-design environment can be viewed as a combination of diverse design
tools which are collected in one place. Some co-design approaches rely on the general
design tools to perform parts of their design tasks. General tools such as high level
hardware-synthesis system (OLYMPUS) [3], and Parallel-Virtual-Machine (PVM) [4]
for system simulations and verification, are available as support tools.

Existence of efficient design tools in well established environments such as CASE
in the software-system domain, and CAFE in the hardware-system domain, motivates
applying the same techniques to the co-design domain which includes ideas from
both areas. Available tools in CASE and CAF provide an environment for rapid and
interactive software construction, testing and maintenance. These tools are intended
to serve a team of designers to work on a large project. In some cases different
design tools are gathered in one package namely integrated development environment
to provide a homogeneous and friendly appearance of the whole system. Statemate
tool', SPee DCHART?, and EzpessV-HDL?, are examples of this kind. There are also
environments for tool integration which facilitate the interface and communication
among individual design tools in that environment. HP SoftBench [5] is a member of
this group. The above tools in both domains (software and hardware) are attributed
with some major characteristics such as: Use of graphical specification techniques,
simulation of specification, code generation in common programming languages, use
of project management, document generation, etc. These characteristics, are also
feasible for an integrated HW /SW co-design tool.

We are interested in analyzing successful co-design systems to evaluate their
flexibility for adoption of some changes in their architectures. We hope this anal-

1 Statemate is a registered trademark of i-logics inc.
28PeeDCHART is a trademark of Speed S.A
3 ExpessV-HDL is a registered trademark of i-logics inc.



ysis to assist us in designing a proper architecture for the co-design system we are
working on. We use an analysis method, designed for evaluation of non-functional
qualities (modifiability, scalability, security, etc.) of software system architectures,
for the co-design systems. The method is called SAAM [1] which is stand for Soft-
ware Architecture Analysis Method. A brief description of the SAAM method is also
available in section 5. This paper has one main goal which is the evaluation of the
selected co-design architectures, and one side effect which is the test of applicability of
SAAM, originally devised for software architectures, on a different field. The SAAM
method has been successfully applied to a few important software system domains
such as Internet Information Systems (IIS) [2], and User Interface domain [1].

This paper is structured as follows: The next three sections briefly describe com-
mon HW/SW co-design approaches namely, UNITY, COSYMA, and CASTLE with
respect to their system architectures. In section 5 The SAAM method is described
and the notion of task scenarios as a basis for functional partitioning and architec-
tural evaluation are presented. The above co-design approaches are then evaluated
using SAAM method and a comparison table is presented. Finally section 9 gives a
conclusion to the paper. Before starting the description of the co-design systems, it
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Figure 1: Common structural notation used to represent the co-design architectures.

is important to note that the architectural notation presented here is different from
the notation used in original papers. In order to analyze and compare a number of
independently developed systems, it is helpful to first represent these systems with a
common structural notation. The notations are shown in Figure 1.

2 The UNITY system

The UNITY approach to HW/SW co-design [8] employs an automatic partitioning
algorithm which separates the system specification into hardware and software, inde-
pendent of the synthesis method applied for the target system. UNITY exploits of



two-stage clustering technique to partition the unity-elements (the smallest unit in a
UNITY program), into hardware and software parts. The architecture of the UNITY
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Figure 2: The architecture of the UNITY approach.

approach is shown in Figure 2. In UNITY, the system specification is defined in the
user interface unit which is then parsed and an abstract syntax tree is produced. The
task of Classifier unit is to verify the relationship among UNITY elements in the
parsed tree with regard to some defined attributes, and to build a classification table
of different implementation alternatives. This table is kept in a data repository called
classifications. The Sel/Decide unit selects a particular implementation alternative as
reference for the clustering process, and dispatches it for the partitioning procedure.
Partitioning consists of two dependent clustering procedures. At first stage (clustering
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Figure 3: The cluster tree, builds clusters from elements el to e6.



1), the elements are grouped (clustered) according to their implementation similari-
ties and a cluster tree is set up (Figure 3). At the next step of this stage, the cluster
tree 1s cut at some layer, with the goal of minimizing the cost function. The cutting
algorithm compares different cut lines to find the one with minimum cost. The result
of the cut line at the first stage is a set of subtrees which is used as the inputs for the
second clustering stage. The algorithm for the second stage clustering (clustering 2)
is similar to that of the first stage with different criteria. A library, containing the
attribute lists of the available complex components also exists. This library is used
by the clustering algorithms to group the elements having commonalities according
to the applied criteria.

If the current gathering of elements in clusters and the result of the cost function
is not satisfactory, The select/decide unit selects another implementation alternative
from the available set in the classification table and the partition procedure is re-
peated. This cycle is iterated until one of the alternatives is selected. The user
interaction or the limited number of iterations prevents the free running of the par-
titioning loop. When an implementation of clusters is acceptable, it i1s fed to allo-
cation/schedule unit and the allocation process starts. It assigns each cluster to a
separate module of a component in the library.

In order to design the communication interface and control sequence among
the modules in software and hardware, a particular graph called interface graph is
developed by the partitioning unit.

The scheduling process searches through the interface-graph and establishes the
activation sequence among the created clusters. The interface graph and the target
system is then used by the simulate/evaluate unit to assess the target system. The
simulation is performed using a general tool (parallel virtual machine). The evaluation
of the created system is based on the comparison of simulation results against the
design constraints. The result of the evaluation is then used by the select/decide
unit to determine if the final system is acceptable within the user defined constraints
or not. In case of unsatisfactory results, the whole design procedure is repeated by
selecting another implementation alternative from the classification table.

3 The COSYMA system

COSYMA (CO-SYnthesis for eMbedded Architecture) [7] is an automated hard-
ware /software partitioning system for co-designing of small embedded systems such as
micro-controllers. The architecture of COSYMA is shown in Figure 4. User-Interface
allows us to specify the target system in C* programming language. C?® is a superset
of C language which permits the user to predefine functions to be mapped in hard-
ware or software. The translation unit translates C'* specification into an Extended



Syntax Graph (ES graph) which is kept in a data repository called Internal Graphs to
be further used by the Simulator, partitioning mechanism, and the conversion unit.
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Figure 4: The architecture of the COSYMA approach.

3.1 Communication and partitioning mechanism

In COSYMA, the partitioning procedure is a kind of optimization problem. The
user defines a set of hardware modules such as ALUs, multiplexers, etc., and the
partitioning algorithm searches to find the minimum set of software code such that
if implemented in hardware, will cause sufficient speedup according to the run time
analysis. Time constraints and hardware costs are the main criteria for partition-
ing. At first all the system functionalities are specified in software. The partitioning
procedure tries to move segments of codes from software to hardware to meet the
time constraints (with the assumption that hardware is faster than software). The
partitioning unit gets the segments of codes in ES graph form (from the repository
internal graphs) and successively moves them from software to hardware. Commu-
nication macros are used to maintain the links between parts of the graph moved to
hardware with those still are in software. Figure 5 depicts the system as modules and
the communication links. The relation of the modules such as procedure calling and
parameter passing are shown as edges. Whenever a module is moved to hardware, a
set of communication links are established. This causes a communication overhead
which should be considered in the cost estimation. In Figure 5 Two modules A and B
are already transfered to hardware and the partitioning procedure is now transferring
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Figure 5: Transferring a module from Software to Hardware.

the module C and its links to hardware. The actual communication of the modules
in software and hardware is implemented with a very simple protocol, using shared
memory as the media.

For each block of codes in software an early estimate of time speed-up is assigned
by the user which is a guide for the first partitioning. There is also a user-defined
speed up limit which dictates to the system when to stop the partitioning process.
For successive partitioning loops, the actual speed-up of the modules will be used
instead of the estimated one. The initial module-partitioning is accomplished by the
partitioning unit, using the estimated speed-up data for the modules. The resultant
software and hardware modules are stored back to the internal graph repository.

The main partitioning loop starts by an inverse translation of the software and
hardware parts form graphs to programming languages. The software modules are
translated to C programs and the hardware modules are translated to hardware C.
This conversion generates the specification of the partitioned system in standard
languages which allows the use of standard development tools. These operations are
represented by the unit Conversion to SW-C & HW-C. In the process of generating
the source codes, communication macros are also inserted.

The SW compile unit compiles the generated C program to produce object code
for the target processor. The hardware C program is a form of hardware descrip-
tion language which is used by the high-level synthesis system OLYMPUS [3] from
Stanford university. The OLYMPUS system generates the hardware functions and
implements them as functional units of the co-processors or peripheral units. The
whole functionality of OLYMPUS is represented by the HW synthesis unit. The tar-



get system specified by the OLYMPUS system and the software code provided by the
SW compile unit are fed to the unit run time analysis. In the latter unit the inter-
faces between components are established and a run time analysis is performed to get
the timing data. To obtain a criterion for evaluation of the synthesized system, the
Cost estimation unit uses a cost function which is parameterized by the timing data
and hardware cost. Timing data is the execution time of the whole system, and the
hardware cost is approximated by the number of synthesized hardware components.
The resultant evaluation indicates whether another iteration of partitioning loop is
required or not. If the design is not yet optimal, i.e. it can not satisfy the required
time speed up assigned by the designer, the partitioning unit tries to transfer extra
modules to hardware or move some modules back to software. To perform this task,
the partitioning unit uses actual timing data of the modules, obtained in the run time
analysis of the system.

There 1s also a simulator for ES graphs which allows simulation of a C* de-
scription (with parallel processes). The simulator aids the designer to detect the
possible errors in the system specification before any effort for system co-designing,
thus preventing extra cost caused by the design of an erroneous system.

4 The CASTLE system

The CASTLE system (Co-design And Synthesis TooL. Environment) [6] is an au-
tomated co-design environment with no pre-defined target architecture. CASTLE
emphasizes the testability of the target system. Some parts of the system such as
partitioning strategies and hardware libraries have recently been completed. System
specification is described in one of the programming languages such as C, VHDL,
or VERILOG. The architecture of the system is shown in Figure 6. The system is
specified in the wuser interface unit, and the specification is kept in a data reposi-
tory specification for system simulation. It is then translated into a series of internal
graphs in two levels of abstraction. The first layer with higher level of abstraction
(software view) describes the behavior of the system in the form of control and data
flow graphs (CFG/DFG). The second layer, represented by finite state machines, is
extracted from CFG and DFG. These FSMs manifest the hardware view of the system
and have more implementation related details. The partitioning process, represented
by the partitioning unit, is based on information that exist in wnternal graphs. The
graph format allows the process to detect parallel, sequential, and behavior-control
parts in order to partition the system. After partitioning the system specification
into hardware and software parts, the main task is how we can select the proper
components to correctly execute the software (handled by processor), and to perform
the hardware operations (implemented in peripherals). The target architecture in the
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Figure 6: CASTLE architecture

CASTLE system is not a pre-defined architecture and can be synthesized in different
ways which are not discussed here.

The HW library is a collection of available complex components. The HW allo-
cation unit is responsible for finding the most proper components, from library, which
can perform the operations assigned to the hardware and to select the appropriate
processor. The target system unit connects the hardware components to the proces-
sor and creates a complete system. It also provides the necessary interface among
modules. This is a critical task from the CASTLE designers’ point of view, since
the correct operation of each system component is the major goal of the CASTLE
approach. Therefore, the final operation on the synthesized system is the correctness
test which assures the resultant system conforms with the system specification. The
correctness test unit aims to check all parts of the system to make sure their correct
operations. It is responsible to automatically generate test cases to be run on the
synthesized system. Some tools and methods exist to test high-level behavior of the
system by converting the system behavior to finite state machines. The test based on
this technique can not be applied to the low-level structure of the system. Hardware
techniques for test case generation, which is applied to the low level structure, are
based on functional model of the system. Co-designed systems involve both high
level and low level views of a system. Test case generation for the co-design systems
requires a combination method for test of both high-level and low-level model of a
system. This method is still under investigation. The simulation unit simulates those
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Figure 7: System intermediate representation in CASTLE approach.

characteristics of the system which are tested and the results are compared. In case
of an unsatisfactory result, the partitioning procedure is resumed.

5 SAAM: Software Architecture Analysis Method

SAAM, a joint development by R. Kazman, L. Bass, G. Abowd, and M. Webb [1],
is a method for analyzing of large software architectures. Non-functional qualities of
software systems (modifiability, scalability, security, etc.) were used as the evalua-
tion criteria in the SAAM paper. The method had some shortcomings which in the
next attempt to improve the method, they changed the focus from non-functional
qualities as the base for evaluation, to task-scenarios [2]. In order to apply SAAM to
the co-design domain, the system architecture should be an integrated environment,
not individual design tools combined by a tool-integration environment such as in

MARVEL system [15].

5.1 Overview of the SAAM method

The following descriptions of the SAAM method are excerpts of the paper [2]. Readers
who are familiar with the topic may skip this section.

A functional partitioning specifies the distinct functions or services that a system
must provide. It is a means for understanding what is common between all applica-
tions in a given problem domain. We will use task scenarios to develop a functional
partitioning. These task scenarios are not intended to cover the complete usage of
the system, therefore the resultant functional partitioning may not cover all aspects
of the system developed in a particular domain.



In some mature domains such as databases or compilers an agreed on functional

partitioning exists. These functional partitioning often come in the form of reference
architectures. In such cases, this functions may be used instead of generating them
from task scenarios. The 8 steps of the SAAM method are summarized below:

1.

Define a collection of task scenarios that illustrate the kinds of activities the
system must support. These will reflect the non-functional qualities of interest.
The scenarios will also present interaction from different roles, such as end user,
system administrator, maintainer, and developer.

Develop a functional partitioning that manifests the ramifications of the task
scenarios. The various functions or services introduced in the partitioning are
the result of one or more scenarios. Maintain a coupling between the elements
of the functional partitioning and the scenarios that each supports.

Classify the task scenarios as direct or indirect by indicating whether they are
executed by the functions and services which are already existed in the ar-
chitecture (these are direct tasks), or whether the architecture requires some
modification in order to include the services (indirect tasks).

Express the candidate architecture in a common syntactic architectural nota-
tion.

. Map the functional partitioning onto each candidate architecture.

. For each direct task scenario, determine whether the target system supports

this task (by feature inspection). That is, a direct task can be executed by
the functions in the functional partitioning. The evaluation is binary; if the
candidate architecture supports the task scenario, it will receive (+) for its
evaluation, otherwise will receive (-).

Identify the functions associated with the indirect task scenarios. For each
function, inspect the structural elements to which it is allocated in the candidate
to determine whether any other function is computed within the same structural
element. If so, then give the candidate a (-) for the scenarios associated with
the function. If not, then give the candidate a (+) for those scenarios.

. Finally, an overall ranking of the candidate architectures is developed by weight-

ing each scenario and using that weighting to interpret the ratings on the indi-
vidual scenarios.



6 SAAM method on three co-design approaches

In this section we apply the 8 steps of SAAM method on three HW/SW co-design ap-
proaches we already described. These candidate architectures are UNITY, COSYMA,
and CASTLE, described in sections 2, 3, and 4 respectively.

6.1 Defining the task scenarios

As is described in step 1, by inspection of the three co-design systems we should
develop a list of task scenarios. The scenarios are in conjunction with two roles in the
co-design environment: designer who uses the co-design system to produce a mixed
HW /SW target system, and developer who modifies parts of the co-design system to
install the new functions.

The following task scenarios are related to the role of designer:

e Allocating parts of the specification to hardware or software: In this
scenario, the designer forces the design tool to allocate parts of the specification
into software or hardware, hence overruling the automated partitioning mecha-
nism for those parts. This scenario assists the designer to start the partitioning
algorithm with specific components or to test an implementation alternative. It
manifests the flexibility (also called migratability) of the co-design system.

e Changing the hardware components: In this scenario the designer mod-
ifies the attribute list of the available components in the hardware library, or
includes (excludes) hardware components. This scenario in fact changes the
target system which executes the software part and reflects the modifiability
quality of the co-design approach.

e Adding pre-existing HW or SW specifications to the target system:
The aim of this task scenario is to equip the co-design system with a set of
efficient and reliable software and hardware modules which are already tested
and used. In order to use these libraries of module specifications, the system
should use the standard tools for software compilation or hardware synthesis.
This re-usability of elements is a key characteristic of the new development
environments.

e Trying several implementation alternatives for the target system:
Since it 1s difficult to come up with the best partitioning result on the first
try, a mechanism is required to automatically repeat parts of the (or the whole)
design process to achieve a design alternative with optimal performance. In
this process the mechanism should use some evaluation criteria defined by the
designer.



¢ Change of the HW /SW communication protocol: The communication
between modules in hardware and software is an important factor in the design
process. It describes how and when the modules should send or receive data.
Communication i1s important in the sense that it directly affects the time factor
in the cost function. The designer may desire to test different methods of
communication and observe the effects on the overall system performance. This
reflects the modifiability characteristic of the design system.

e Simulating the system specification: The design process is started by defin-
ing the system specification. Producing an error free specification can save
human effort and money. Using a simulation utility to test the specification
and assurance of its correct behavior is the best way of producing a bug-free
specification.

The following task scenarios are related to the role of system developer. The
scenarios are in conjunction with the provision of modern design facilities for this
domain.

e Interfacing to a high level synthesis tool: This task scenario investigates
the possibility of replacing the conventional editor, as the user-interface, with
one of the state of the art graphical interfaces. These graphical tools translate
the system specification into one of the common textual languages. This mod-
ification provides us with the use a high level synthesis facility in the co-design
domain. This improvement represents the Integrability of the system.

¢ Adding a target-system demonstration utility: Creating a correct system
1s the goal of the system development tools. Each co-design system has a certain
method of comparing the target system against its specification. This scenario
suggests adding a general simulation tool which assists the user in interactively
testing the performance of the final system. It draws the component layout of
the system and permits the user to provide input data and observe the outputs
of the system. It also presents some statistics of the system as a benchmark.
This scenario is an indication of Integrability of the co-design method and serves
for checking the correctness of the target system against its specification.

6.2 Functional partitioning

In accordance with step 2 of the SAAM method, we now extract a series of functions
and services from the task scenarios we presented in the previous section.
Considering the task scenario:

o Allocating parts of the specification in hardware or software.



we need a user-interface and a feature which is supported by the HW/SW par-
titioning mechanism to allow the user to allocate parts of system specifications in
hardware or software. In most cases the initial partitioning is determined by the
designer which requires the following services. Acronyms are used to refer to the
functions.

UlI: User Interface.
SU: Support for User defined partitioned elements.

For the scenarios

o Changing the hardware components.

o Adding pre-existing hardware or software specifications to the system.

we require a hardware library to accommodate the components, a hardware allocation
function which assigns different hardware specifications to available hardware com-
ponents, and a software allocation function which translates (compiles) the software
specifications to the machine language of the target processor.

LB: hardware LiBrary.
HA: Hardware Allocator.

SA: Software Allocator.

Considering the following task scenario,
o Trying several implementation alternatives for the target system.

we need to somehow simulate the target system in order to acquire data from its
dynamic behavior (run time analysis), and its hardware or software cost. This simu-
lation is different from the simulation task which is usually performed for testing of
the system specification. We need to generate cost functions according to the infor-
mation provided by the target system simulation, and finally the cost functions should
be compared against the user-defined constraints. Therefore the following functions
are required.

SM: target system SiMulator.
CF: Cost Function generator.

EV: EValuator.



For the task scenario:
o Adding a target-system demonstration utility.

similar to the previous scenario, we first need to connect different parts of the
target system and simulate its functionality, then using a demonstration utility we
can see the system layout and provide some input data to it and observe the output
of the system. Therefore, we need the following functions

SM*: * target system SiMulator.

DU: Demonstration Utility.

Regarding the task scenario:
o Change of the HW/SW communication protocol.

we need a protocol-generator function which produces different communication
protocols. A designer, using a user-interface, defines the protocol and the protocol-
generator defines and schedules the communication sequence among the modules.
Therefore we need:

PG: communication Protocol Generator

Ul*: User Interface.

The next task scenario,
o Simulating the system specification.

needs a simulator tool to simulate the system specification. The simulator aids the
designer to check the design functionality for error detecting.

SIM: specification SIMulator.

SP: SPecification repository.

In the following task scenario,

o Interfacing to a high level synthesis tool.

4 *  The function is already defined.



two approaches are imaginable. Both use graphical editors and other facilities
of the tool to specify the design. In the first approach the code generation engine of
the high level synthesis tool is not used and the tool directly produces the internal
graphs of the co-design system (e.g. CFG/DFG in CASTLE, or internal graphs
in COSYMA). In the second approach the designer uses the code generator of the
specification tool and produces the source code in one of the common programming
languages (i.e. C, or VHDL). The produced code is in fact the system specification
which is then used by the partitioning mechanism. For this analysis we require a
graphical editor to produce the specification of the system in Statecharts or state
transition diagrams, a graph translator to produce the internal form of specifications
in each co-design approach, and a code generator to produce the target codes.

GE: Graphical Editor.
GT: Graph Translator (for the first method).
CG: Code Generator (for the second method).

After the functional partitioning process, step 3 of the SAAM method suggests to
classify the task scenarios as direct or indirect. Table 1 shows the task classifications.

As we mentioned earlier, when there are several systems to be compared, it
is helpful to draw their architectures in a common notion. This is the step 4 of
the SAAM method. We already presented our candidate architectures in a simple
common notation. These architectures are repeated in the next section.

In order to apply the remaining steps of SAAM, we separately discuss each of
our three candidate architectures.

6.3 Candidate architecture UNITY

The UNITY system was described earlier in section 6.3. In pursuing step 5 of SAAM,
those functions which exist in UNITY system, are indicated in Figure 8. The ar-
chitecture of the system has been annotated with the functional units introduced by
indirect task scenarios (dashed boxes). Now, we investigate whether the candidate
system supports the direct tasks, or not (step 6). By feature inspection of the UNITY
approach and functional allocation of the direct task scenarios to the modules of the
architecture, we are convinced that this system supports all direct scenarios except
one. It can not simulate the system specification so it gets a (-) for this part.
The following section investigates the effect of indirect tasks to the system.

e Change of the HW /SW communication protocol: For this task scenario,
we need a protocol generator (unit PG in Figure 8) which also interacts with



Task Scenario Classif- | Functions | Quality
ication factor

Allocating parts of the specification direct UI, SU Flexibiluty

in hardware or software

Changing the hardware components direct LB, HA Modifiability

Adding pre-existing hardware or direct LB, HA, SA | Re-usability

software specifications to the system

Trying several implementation direct SM, CF, EV | Efficiency

alternatives for the target system

Simulating the system specification direct SIM, SP Testability

Change of the HW/SW indirect | PG, Ul Modifiability

communication protocol

Adding a target-system demonstration | indirect | SM, DU Integrability

utility

Interfacing to a high level synthesis indirect | GE, CG Integrability

tool

Table 1: Functional decomposition of the task scenarios, and their classification into
direct and indirect.

the user. The communication protocol is extracted from the interface graphs
which is created in unit alloc/sched (Refer to section 2). Unit PG is attached
to unit alloc/shed to manipulate the interface graphs. In order to change the
protocol, the interface graph should be changed. This change is not localized
to one location and propagates through the system. The simul/eval should be
modified to use different protocols for simulations. Therefore UNITY system
gets a (-) for this task.

¢ Demonstration of the target system: In this scenario, unit simul/eval pro-
vides the information of the simulated target. This unit can then communicate
with the demonstration utility (unit DU in Fig.) to show the target system
behavior. The user-inputs, through unit DU, can be passed to the target-
simulator unit and after being processed, the results are sent back and shown
by the demonstration screen. This modification does not affect other parts of

the system, therefore get a ().

e Interfacing to a high level synthesis tool: The UNITY language, though
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Figure 8: UNITY System with function allocations and changes to its architecture.

it is good for system specification, has its own peculiarities and is not sup-
ported by high level synthesis tools. The first approach for implementing this
task scenario is to generate the parse tree, used by the classifier unit, from
the graphical specification methods. In doing this, the classifier task should
be changed to extract the implementation alternatives for the UNITY elements
from the graphical tool. The second approach uses the generated code from the
graphical tool as the UNITY system specification. Existing graphical specifica-
tion tools do not generate the UNITY language. None of these methods gives
us a promise for successful implementation of this task scenario, therefore the
UNITY architecture receives a (-) score for it.

6.4 Candidate architecture COSYMA

The COSYMA approach is presented in section 3 and its architecture is repeated
in Figure 9. For this system also, we go through steps 5, 6 , and 7 of the SAAM
method. Figure 9 shows the mapping of the partitioned functions to the structure of
the system (step 5). Feature inspection of this system with respect to the direct task
scenarios (step 6) indicates that the COSYMA system supports all the direct tasks
and therefore gets a (+) for that.
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Figure 9: COSYMA System with function allocations and changes to its architecture.

The investigation of three indirect task scenarios are described below:

¢ Change of the HW/SW communication protocol: This scenario needs
the installation of a protocol generator (PG). Fortunately the system has al-
ready isolated the communication protocols in the repository com. protocols.
Therefore the protocol generator can easily access and change the protocols
without any interference with other modules functionalities. The architecture
gets a (4) for this scenario.

e Demonstration of the target system: This task scenario is also easy to
implement. The hardware elements, i.e. co-processors, and object code for a
target processor, are fed to the unit run time analysis where the target system
is simulated. This unit can communicate the system simulation data with the
module demonstration unit. The COSYMA system gets another (+) for this
feature.

e Interfacing to a high level synthesis tool: To investigate the applicabil-
ity of this scenario, we consider the specification language for this approach,
C?®, which is a superset of C language. C* contains multitasking and process
communication features and its skeleton is C. In order to use a high level synthe-
sis tool with this system, the code generator function (CG) of the tool should
be modified to be matched with the extra features of the C® language over



conventional C. This adjustment may be difficult or not, depending on the dif-
ferent tools. In fact high level synthesis tools are capable of designing parallel
processes and obviously this parallelism is reflected on their generated output
codes. As a result the interface of a high level synthesis tool to the COSYMA
system 1s achieved by applying the output of the code generator tool to the
translation unit of the architecture and designing the system with the graphical

editor (GE). COSYMA gets a (+) for this scenario.

6.5 Candidate architecture CASTLE
The co-design system CASTLE was described in section 4. We apply step 5 of SAAM

and map the decomposed functions into the structural elements. The architecture is
shown in Figure 10. Feature inspection for direct task scenarios in Table 1 indicates
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Figure 10: CASTLE System with function allocations and changes to its architecture.

that the CASTLE system can handle all direct tasks except one. Since the parti-
tioning mechanism of the CASTLE system is not published, we are not sure about
the proper support of the task scenario, Trying several implementation alternatives
for the target system, in this approach. Although the target system correctness is
a criterion for repeating the partitioning process in the CASTLE system, still other



important parameters such as area, timing, etc., defined by the designer and illus-
trated in the cost functions, are not used as the criteria for resuming the partitioning
process. This is implied from the existing system architecture which lacks a structural
block assigned for the target system evaluation against these parameters. CASTLE
receives a (-) score for this deficiency. In accordance with step 7, three indirect tasks
scenarios are investigated in the following part.

e Change of the HW /SW communication protocol: Since the partitioning
process of the CASTLE is recently developed, there is not sufficient information
about the communication method among the modules in hardware and software,
so we can not judge the merit degree of this task scenario.

e Adding a target-system demonstration utility: It seems that the im-
plementation of this scenario is as simple as in the COSYMA system, since
the target system unit has the simulation information of the target system and
therefore the demonstration utility can be interfaced to this unit. This task has
no interference with other tasks of the system, therefore it scores a (+) for the
system.

e Interfacing to a high level synthesis tool: The system specification in
CASTLE is defined in common languages such as C, VHDL, or Verilog. This
means that a high level synthesis can directly be used and the output of the
code generation tool can be used as the system specification. Another method
described for using a high level synthesis tool is also imaginable for this system.
The internal graphs of the CASTLE approach are in the form of control flow and
data flow graphs which can be generated directly by graphical editors of some
CASE tools (e.g. Statemate). This solution, though it seems ideal, has many
consequences. It requires vast changes to some system parts such as partitioning
and stmulation unit, which is not desired. Using the first method, this system
gets a (+) for the task scenario.

7 Comparisons

Table 2 summarizes the results of the above analysis. In order to evaluate the can-
didate co-design systems according to the comparison table, the evaluator should
assign weightings for task scenarios. Hence, using SAAM as a concrete method for
analyzing the system architectures, the evaluator’s interpretation regarding the rel-
ative importance of the task scenarios is a determining factor. This characteristic
provides the SAAM method with a degree of freedom which is helpful for evaluation
of the candidate architectures from different points of view. As we mentioned in the



(indirect) (indirect) (indirect)

Supporting Change of the Adding system | Interfacing to
direct communication | demonstration | a high level
task scenarios protocols utility synthesis tool
All, except

UNITY System — + —
simulation

COSYMA All + + +
All, except Trying | Communication

CASTLE | several imple. method is not + +
alternatives tdentified yet

Table 2: Comparison of the analysis

introduction, the main concern of this paper is the study of some co-design architec-
tures regarding their potential to be equipped with modern design facilities, therefore
the indirect task scenarios were created accordingly. With the above objective, we
assign the highest weight to the indirect task, interfacing to a high level synthesis tool,
and the next weight is given to the scenario Adding system demonstration utility. The
least important indirect task in this strategy, is the change of communication protocol
which in different situation may acquire the highest weighting.

Referring to the Table 2, we observe that COSYMA has gained all of the scores
and therefore it is considered to have the best architecture among the others. The
UNITY architecture is not suitable for a change of the communication protocols;
and regarding the enhancements with modern development tools, it is neither appro-
priate for interfacing to a high level synthesis tool, nor supports the simulation of
system specification. As we know, these shortcomings are important in our discus-
sion, therefore UNITY architecture is evaluated as the weakest architecture in this
regard. CASTLE needs some improvements in its partitioning loop such that it can
evaluate the target system against the user-defined constraints. Omne last point is
to be mentioned; the above evaluation does not imply that UNITY is not a good
co-design system, and in fact it has a sophisticated partitioning technique. What
we evaluated here was: how well different co-design architectures could adopt extra
features for the future changes or improvements.



8 Lessons learned

In the course of this evaluation we learned the following lessons: (i) the correctness of
the SAAM method is directly affected by the selection of the appropriate scenarios. To
analyze a system correctly, a domain expert and information providers (e.g., end-user,
developer, maintainer, etc.) are needed to set up a proper set of task scenarios which
reflect the various uses of the systems in the field. Otherwise the architectures may
be evaluated with incidental scenarios, producing wrong results. (ii) It was not easy
to produce homogeneous architectural diagrams of different systems, with the same
notations and level of details. This was partly because each designer tried to elaborate
particular aspects of the system, and partly because our required information was not
directly presented in the resources we used. The required functions by task scenarios
implicitly dictated us the right level of abstraction in the representation of diagrams.

(iii) The evaluation of these three HW/SW co-design systems brought us a valu-
able knowledge of this field, which could not be acquired with isolated study of each
system. Although, SAAM is not intended for designing a new system, its notion of
task scenarios and their break-down into a set of functions are helpful to the struc-
tural design of a HW/SW co-design system. The functional decomposition of the
direct task scenarios provides us with the common functional qualities we expect
from the new system. Different allocations of the functions to the structural blocks of
the system can drastically affect the quality of the system architecture. We expect a
good architecture to show low coupling and high cohesion in terms of the functional
allocations to the structural elements of the system. To provide low coupling, we
do not distribute the functions related to a single scenario among a large number of
structural components. To provide high cohesion, we try to prevent the allocation of
the functions related to different scenarios into single structural element. The above
design considerations are the implications of the evaluation criteria used in the SAAM
method, which assists us in designing a new system.

9 Conclusion

In this paper we have introduced the subject of hardware/software co-design and three
competitive approaches in this field were briefly presented. We tried to establish a link
between the concerns and facilities provided in software system engineering with this
new research area. Illustrating this connection, a software system architecture-based
analysis method (SAAM) was used to analyze and compare our selected approaches
in co-design. In this way we succeeded to show the strengths and weaknesses of the
candidate architectures regarding their capabilities to accept modern design facilities
available in related disciplines (software or hardware).
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