
Dynamic Analysis of Software Systems using Execution Pattern Mining

Hossein Safyallah and Kamran Sartipi
Dept. Computing and Software, McMaster University

Hamilton, ON, L8S 4K1, Canada
{safyalh, sartipi}@mcmaster.ca

Abstract

Software system analysis for extracting system function-
ality remains as a major problem in the reverse engineering
literature and the early approaches mainly rely on static
properties of software. In this paper, we propose a novel
technique for dynamic analysis of software systems to iden-
tify the implementation of the software features that are
specified through a number of feature-specific task scenar-
ios. The execution of task scenarios and application of data
mining algorithm sequential pattern discovery on the gener-
ated traces allow us to extract common functionality asso-
ciated with the corresponding feature-specific task scenar-
ios. The extracted patterns are used to identify the groups
of core functions that implement software features. The pro-
posed approach can be used for program comprehension
and feature to source code assignment. A case study on the
Unix Xfig drawing tool has been provided.

KEYWORDS: Dynamic Analysis; Scenario; Execution
Trace; Sequential Pattern Mining; Feature Extraction.

1. Introduction

The early attempts for extracting software functionality
mainly had a static nature and were centered on searching
for patterns of the system functionality based on program
templates in a knowledge base [7]. However, static anal-
ysis suffers from the lack of enough semantics for design
or functionality recovery. The static approaches are mostly
useful for extracting the structure of software systems and
support specific reverse engineering activities such as re-
documentation, restructuring and re-engineering.

There is a growing attention towards the dynamic aspects
of software systems as a challenging domain in the software
reverse engineering [8, 3]. Dynamic analysis deals with
task scenarios that formulate the user-system interactions in
an informal or semi-formal manner. The approaches to dy-
namic analysis cover areas such as performance optimiza-
tion, software execution visualization, and feature to code

assignment. In this work, we address the latter problem.
Dynamic analysis with its suitability in extracting system
functionality has several challenges compared to the static
analysis: i) a static analysis usually generates a complete
set of software facts through parsing or lexical analysis of
the source code based on a domain model, whereas in dy-
namic analysis only a small subset of the possible dynamic
traces are extracted; ii) obtaining meaningful knowledge
from the extracted execution traces is a difficult task that
affects the applicability of the dynamic analysis; and iii) the
large sizes of the execution traces that are caused by pro-
gram constructs such as loops and recursions may disfunc-
tion the whole dynamic analysis.

In this paper, we propose a novel approach to dynamic
analysis of software systems based on the frequently ap-
pearing patterns in execution traces in order to identify the
implementation of the software features in the source code.
We execute a set of task scenarios with a specific shared fea-
ture on the software system in order to generate execution
traces. The application of a sequential pattern mining algo-
rithm on the extracted execution traces allows us to spotlight
on the feature-related system functionality. In this context,
we obtain high-frequent patterns in execution traces, where
a post-processing of the generated execution patterns will
allow us to separate the more general functionalities (e.g.,
starting/terminating operations and common utility func-
tions) from the specific functionality of the task scenarios.

The contribution of this paper include: managing the
large sizes of the execution traces using data mining tech-
niques that leads us to automatically identify specific and
general software feature functionalities within the source
code.

The remaining of this paper is organized as follows: In
Section 2 the proposed framework for dynamic analysis is
presented. In Section 3 we discuss the execution pattern
mining analysis. Section 4 provides a case study using Xfig
drawing tool. Section 5 addresses the related work; and
finally, Section 6 concludes our discussion.

1

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Set 1
Scenario

Execution
Patterns Execution

Pattern
Mining

Assignment
Source Code

Featrue to

Listing

Traces
Scenario−Set

Scenario Execution

System
on Instrumented

Set of
Execution
TracesFeature

Inter−Scenario−Set
Common Pattern

Intra−Scenario−Set
Common Pattern

Feature−Specific

Selection
Processing

Pre−

New Scenario Set Selection

Pattern Repository

Scenario Scenario
Set 2 Set 3

Scenario Set

Execution Patterns
Filtering Noise

Scenario−set

Patterns
All Execution

Patterns
Purified

Entry−Exit

Figure 1. Proposed dynamic analysis frame-
work to identify feature functionality in the
source code.

2. Proposed Framework

Figure 1 illustrates an overview of the proposed frame-
work for dynamic analysis of software systems. The
framework allows us to localize the patterns of program
executions that correspond to specific features of the task
scenarios. This process consists of two stages: Execution
Pattern Extraction and Pattern Analysis. In the remaining
of this section these stages are briefly described.

Stage 1 (Execution Pattern Extraction): based on
the application domain, available documents, and user’s
familiarity with the subject system, a set of relevant task
scenarios are selected that examine a single software
feature. We call this set of scenarios as feature-specific
scenario set. For example, in the case of a drawing tool all
scenarios that examine the zooming ability of the software
would constitute such a feature-specific scenario set. In
the next step, the software system is instrumented 1 to
produce the name of each function both at the entry and
exit of the function execution. Therefore, executing the
feature-specific scenarios on the instrumented software
system generates a set of entry/exit listings that are then
transformed into a set of function execution traces. In a
further preprocessing step, all redundant function calls
caused by the cycles of the program loops are eliminated
that significantly reduce the large sizes of execution traces.
Finally, in this stage we generate execution patterns by
applying a sequential pattern mining algorithm on the
obtained execution traces. This stage will be discussed in
more details in Section 3.

1Instrumentation refers to the process of inserting particular pieces of
code into the software system (source code/binary image) to generate a
trace of the software execution.

Stage 2 (Execution Pattern Analysis): each execution
pattern is a potential candidate group of functions that im-
plement common feature(s) of a scenario set. We employ a
strategy to spotlight on the execution patterns correspond-
ing to specific features within the scenario sets. This is per-
formed by identifying those execution patterns that are spe-
cific to a single software feature in a scenario set (namely
intra-scenario-set common patterns). Similarly, we iden-
tify the execution patterns that are common among all sets
of scenarios (namely inter-scenario-set common patterns).
In Figure 1 a sketch of the scenario-set execution traces and
intra- / inter- scenario-set common patterns are shown. As
the last step, we identify the functions in the intra/inter-
scenario-set patterns in order to locate the feature function-
ality in the source code. This stage is discussed in Section
3.2.

3. Execution Pattern Mining

In this section we describe the application of a data min-
ing technique, namely sequential pattern mining, to dis-
cover a set of function sequences that implement certain
system features. In the data mining literature a sequential
pattern mining technique is used to extract frequently oc-
curring patterns of purchased items within the sequences
of customer transactions [2]. In this context the sequence
of all transactions corresponding to a certain customer that
is already sorted by increasing transaction-time, is known
as a customer-sequence2. A customer-sequence supports
a sequence s if s is a sub-sequence of this customer-
sequence. A frequently occurring sequence of transactions
(namely a pattern) is a sequence that is supported by a user-
specified minimum number of customer-sequences (namely
MinSupport of this pattern).

In the proposed approach, we use a modified version
of the sequential pattern mining algorithm by Agrawal [2].
In our implementation an execution pattern is defined as a
contiguous part of an execution trace that is supported by
MinSupport number of execution traces. This strategy
produces core functions that implement specific features
of the system. By extending the definition of the execu-
tion pattern to include noncontiguous function invocations,
we can extract function patterns that implement more gen-
eral functionality; however such an expansion may result in
extracting meaningless execution patterns (by joining un-
related parts of the execution trace to form a new pattern)
and generating an overwhelming number of patterns which
drastically increases the time/space complexity of the dy-
namic analysis.

2In the context of this paper, a function execution trace represents a
customer-sequence.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

ca
nv

as
_s

el
ec

te
d[

20
3]

se
t_

ru
le

rm
ar

k[
20

3]
se

t_
si

de
ru

le
rm

ar
k[

20
3]

se
t_

to
pr

ul
er

m
ar

k[
20

3]

se
t_

lin
e_

st
uf

f[
13

4]
x_

co
lo

r[
13

4]
sh

zo
om

y[
15

5]
sh

zo
om

x[
15

5]

se
t_

lin
e_

st
uf

f[
13

4]
x_

co
lo

r[
13

4]
sh

zo
om

y[
15

5]
sh

zo
om

x[
15

5]
ca

nv
as

_s
el

ec
te

d[
19

5]
ca

nv
as

_s
el

ec
te

d[
22

0]
se

t_
ru

le
rm

ar
k[

20
3]

se
t_

si
de

ru
le

rm
ar

k[
20

3]
se

t_
to

pr
ul

er
m

ar
k[

20
3]

se
t_

lin
e_

st
uf

f[
13

4]
x_

co
lo

r[
13

4]
sh

zo
om

y[
15

5]
sh

zo
om

x[
15

5]

se
t_

lin
e_

st
uf

f[
13

4]
x_

co
lo

r[
13

4]
sh

zo
om

y[
15

5]
sh

zo
om

x[
15

5]
ca

nv
as

_s
el

ec
te

d[
19

5]
ca

nv
as

_s
el

ec
te

d[
22

0]
se

t_
ru

le
rm

ar
k[

20
3]

se
t_

si
de

ru
le

rm
ar

k[
20

3]
se

t_
to

pr
ul

er
m

ar
k[

20
3]

se
t_

lin
e_

st
uf

f[
13

4]
x_

co
lo

r[
13

4]
sh

zo
om

y[
15

5]
sh

zo
om

x[
15

5]

se
t_

lin
e_

st
uf

f[
13

4]
x_

co
lo

r[
13

4]
sh

zo
om

y[
15

5]
sh

zo
om

x[
15

5]
ca

nv
as

_s
el

ec
te

d[
19

5]
ca

nv
as

_s
el

ec
te

d[
19

4]

se
t_

lin
e_

st
uf

f[
13

4]
x_

co
lo

r[
13

4]
sh

zo
om

y[
15

5]
sh

zo
om

x[
15

5]

el
as

ti
c_

bo
x[

4]

re
si

zi
ng

_b
ox

[4
]

el
as

ti
c_

bo
x[

4]

bo
xs

iz
e_

m
sg

[4
]

pu
t_

m
sg

[4
]

el
as

ti
c_

bo
x[

4]

re
si

zi
ng

_b
ox

[4
]

el
as

ti
c_

bo
x[

4]

bo
xs

iz
e_

m
sg

[4
]

pu
t_

m
sg

[4
]

el
as

ti
c_

bo
x[

4]

cr
ea

te
_b

ox
ob

je
ct

[2
]

el
as

ti
c_

bo
x[

4]

er
as

e_
bo

x_
le

ng
th

s[
2]

cr
ea

te
_p

oi
nt

[2
]

pu
t_

m
sg

[4
]

el
as

ti
c_

bo
x[

4]
re

si
zi

ng
_b

ox
[4

]

bo
xs

iz
e_

m
sg

[4
]

(Inter−scenario−sets common pattern)
Omnipresent patterns

Invocation Time

Execution pattern for drawing a rectangle

Figure 2. A first generation pattern extracted for drawing a rectangle in Xfig with the highlighted
second generation patterns along with their support counts.

3.1. Categories of Execution Patterns

A large group of patterns are generated in the execution
pattern mining that camouflage the important patterns and
make the task of core functionality extraction a non-trivial
and daunting task. A typical execution pattern can be cate-
gorized as one of the following categories. i) Patterns corre-
sponding to the core functions that implement the targeted
feature of a feature-specific scenario set; in Figure 1 this cat-
egory is referred to as intra-scenario-set common patterns.
ii) Omnipresent patterns that are common to almost every
task scenario of the software system; in Figure 1 these pat-
terns are referred to as inter-scenario-set common patterns.
iii) Noise patterns that do not contribute to a major system
functionality. The following strategies are used to extract
shared patterns corresponding to a set of task scenarios.

Strategy I: given all execution patterns corresponding to
a single feature-specific scenario-set (i.e., sharing a specific
feature), those patterns that are generated by the majority
of the scenarios most likely implement the shared feature
of the scenario set. In order to implement this strategy we
increase the level of MinSupport for the generated exe-
cution patterns to a number that covers the majority of the
scenarios in the corresponding scenario-set. In this way, the
noise patterns will be removed from the extracted execution
patterns. However, the resulting patterns still consist of both
omnipresent and feature-specific patterns.

Strategy II: given all execution patterns corresponding to
a group of feature-specific scenario-sets, each with a differ-
ent specific feature, the execution patterns that are shared
among the majority of the scenarios (i.e., omnipresent pat-
terns) most likely implement the general features of the sys-
tem.

In the next subsection, we describe our proposed ap-

proach to extract each type of execution patterns with regard
to the above strategies.

3.2. Separating Execution Patterns

As discussed above, the generated execution patterns
during strategy I include both feature-specific and om-
nipresent execution patterns. We apply the execution pat-
tern mining twice in order to separate the two types of exe-
cution patterns. The steps are as follows:

• First generation patterns. A group of feature-specific
scenario sets are defined, where each scenario set tar-
gets a different feature of the software, and the execu-
tion patterns corresponding to each of these scenario
sets are extracted.

• Second generation patterns. For the second time, we
apply the execution pattern mining on the collection
of the first generation patterns. The second genera-
tion patterns with small support (e.g., less than 5%)
correspond to the feature-specific patterns. However,
the patterns with a large support (e.g., more than 25%)
correspond to the omnipresent execution patterns.

Figure 2 depicts a part of a first generation pattern cor-
responding to Xfig drawing rectangle feature, where the
second generation patterns are highlighted along with their
support counts. The functions with bold fonts are feature-
specific patterns with small support that perform significant
role in specifying the boundary region for drawing a new
rectangle on the screen.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Feature Extracted Core Functions
resizing cbr, elastic cbr, pw curve, create circlebyrad

Draw center marker, create ellipse, add ellipse, list add ellipse
Circle set lastspline, redisplay ellipse, ellipse bound, draw ellipse

overlapping, debug depth, circlebyradius drawing selected
Draw resizing box, elastic box, boxsize msg, create boxobject
Rectangle create point, create line, add line, box drawing selected
Draw create spline, make sfactor, create sfactor, add spline
Spline last spline, set latestspline, redisplay spline, spline bound

approx spline bound, draw spline, compute closed spline
erase objecthighlight, init center scale, init scale line

Scale scaling line, adjust box pos, elastic scalepts, fix scale line
rescale points, scale arrows, scale arrow, scale linewidth
init arb move, init move, init line dragging
set action on, elastice moveline, elastic links, moving line

Move place line, erase lengths, place line x, adjust pos
set lastposition, set newposition, move selected

Table 1. Extracted core functions correspond-
ing to 5 specific Xfig features.

4. Case Study

In this section, we present the results of applying the pro-
posed dynamic analysis technique on Xfig 3.2.3d [1]. Xfig
is an open source, medium-size (80 KLOC), menu driven,
C language drawing tool under X Window system. Xfig is
used to draw and manipulate graphical objects (circle, el-
lipse, line, spline, rectangle, and polygon) through opera-
tions such as copy, move, delete, edit, scale, and rotate.

Move
Edit

Delete
Rotate

Scale

Flip

Ellipse

Arc Circle

Polyline

Rectangle

Spline
Polygon

Copy

Editing

Drawing

Start Up

Terminate

Figure 3. A feature-specific scenario set that
target the Xfig operation “Flip”.

Figure 3 depicts the adopted strategy to single out a tar-
geted feature by the means of a set of task scenarios. In this
setting, a group of seven scenarios have been selected that
all begin from the start up operation and finish in the ter-
minate operation. In Figure 3 each scenario has a distinct
path within the Drawing component but shares the same

Number of Average Number of Average
Xfig Feature Different Trace Extracted Pattern

Scenarios Size Patterns Size
Draw Circle 10 8143 48 32
Draw Rectangle 10 5510 43 46
Draw Spline 10 17000 61 62
Scale Objects 4 6580 38 47
Move Objects 4 11887 31 53

Table 2. 5 Xfig feature-specific scenario sets
and their dynamic characteristics.

path (i.e., flip operation) within the Editing component. The
group of task scenarios shown in Figure 3 form a feature-
specific scenario set, where the flip operation is the specific
feature.

We follow the steps defined in subsection 3.2 in order
to extract the core functions that implement both specific
features and general features of the Xfig drawing tool.
Table 1 illustrates a group of Xfig features along with the
extracted core functions that implement those features. In
the remaining of this section, we discuss the important
properties of the proposed pattern based dynamic analysis
technique using the Xfig case study:

Reducing the complexity of analysis: Table 2 rep-
resents the attributes of a group of 5 feature-specific
scenario sets that we use in the analysis process. This
table illustrates an important aspect of the approach where
the scope of the dynamic analysis has been significantly
reduced from huge sizes of the execution traces (Aver-
age Trace Size in the range of thousands of functions
per trace) to the manageable sizes of the execution pat-
terns (Average Pattern Size with tens of functions per trace).

Extracting non-visible features: in addition to more
visible system functionalities such as: software initial-
ization / termination and major software features, the
execution patterns uncover other less visible system func-
tionalities, including: mouse pointer handling, canvas view
updating, and side ruler management. This property is
illustrated in Table 3.

Preserving the sequence of operations: in contrast to
the static analysis of a software system or concept lattice
based dynamic analysis discussed in the related work, the
proposed pattern based dynamic analysis will preserve the
time sequence of the function invocations in the result of the
analysis. This property enables the user to get more insight
into the system functionality using the control dependency
between the functions in the execution patterns.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Xfig Extracted Core Functions
Functionality
Side-Ruler set rulermark, set siderulermark
Management set toprulermark, null proc
Canvase canvas exposed, clear canvas
Updating canvase selected
Mouse draw mousefun canvas, draw mousefun
Pointer clear mousefun, draw mousefn2
Handling draw mousefun msg, mouse title
Draw Line set line stuff, x color, shzoomy, shzoomx

Table 3. Less visible Xfig functionalities (left)
and their corresponding functions.

5. Related Work

In this section, we present different approaches to dy-
namic analysis of a software system that relate to our work.
Execution traces have been used in different reverse engi-
neering and program understanding activities. Fischer et al.
[5] used execution traces as clues for tracing the evolution
of a software system. In [11], Zaidman proposed a heuristic
exploration to execution traces that aims at clustering exe-
cution traces of recurring events. Hamou-Lhadj et al. [6]
applied fan-in analysis to the class dependency graph to ex-
tract a high level view of the subject software system.

In a different context, El-Ramly et al. [4] applied a se-
quential pattern mining technique to find interaction pat-
terns between graphical user interface components. In the
work of Zaidman [10] a web-mining technique is applied
on program dynamic call graphs that supports the program
comprehension. Similar to our approach, the above ap-
proaches use mining techniques on the execution traces.

N. Wilde et al. [9] proposed a set difference approach
to execution traces for locating software features; where the
set of functions in the related scenario executions are dif-
ferentiated to extract a specific feature’s functionality. In
our approach, we also use the notion of feature specific sce-
narios, however we extract patterns of execution traces as
evidences of the feature functionality. Eisenbarth et al. [3]
proposed a formal concept lattice analysis to locate compu-
tational units that implement a certain feature of the soft-
ware system.

6. Conclusions

In this paper, we proposed a novel approach to dy-
namic analysis of a software system as an application of
sequential pattern mining on program execution traces. The
resulting execution patterns extract valuable information
out of noisy execution traces. The proposed approach is
centered around a set of task scenarios that share specific
software features. The whole process consists of steps

such as: software instrumentation; feature-specific scenario
set selection; loop-based sub-trace elimination; execution
pattern extraction; execution patterns purification; and fi-
nally interpretation of the patterns. The proposed technique
has been applied on a medium size interactive drawing
tool with very promising results in extracting both feature
specific and common patterns of execution traces. As a
future work we will look at effective pruning methods for
the execution trace generation to allow analysis of very
large traces over 100K functions. (e.g. Apache, MySql).

References

[1] Xfig version 3.2.3. http://www.xfig.org/.

[2] R. Agrawal and R. Srikant. Mining sequential pat-
terns. In ICDE’95, pages 3–14, 1995.

[3] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. IEEE TSE, 29(3) 210 – 224,
2003.

[4] M. El-Ramly, E. Stroulia, and P. Sorenson. Recover-
ing software requirements from system-user interac-
tion traces. In SEKE’02, pages 447–454, 2002.

[5] M. Fischer, J. Oberleitner, H. Gall, and T. Gschwind.
System evolution tracking through execution trace
analysis. In IWPC’05, pages 237–246, 2005.

[6] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Leth-
bridge. Recovering behavioral design models from
execution traces. In CSMR’05, pages 112–121, 2005.

[7] D. R. Harris, H. B. Reubenstein, and A. S. Yeh.
Recognizers for extracting architectural features from
source code. In WCRE’95, pages 252–261, 1995.

[8] T. Richner and Stephane Ducasse. Recovering high-
level views of object-oriented applications from static
and dynamic information. In ICSM’99, page 13, 1999.

[9] N. Wilde and M. C. Scully. Software reconnaissance:
mapping program features to code. JSM’95, 7(1):49–
62, 1995.

[10] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens.
Applying webmining techniques to execution traces
to support the program comprehension process. In
CSMR’05, pages 134–142, 2005.

[11] A. Zaidman and S. Demeyer. Managing trace data vol-
ume through a heuristical clustering process based on
event execution frequency. In CSMR’04, page 329,
2004.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

